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2.1

Determinants by Cofactor Expansion




Determinant

Recall from Theorem 1.4.5 that the 2 x 2 matrix
abl ? 4.1 [d -b
A= cdl = _ad—bc{—c a}
Is invertible if ad — be # 0. 1t is called the determinant

(17%1]=X) of the matrix A and is denoted by the symbol
det(A) or |A|

AT = detl(A) [dc _a,b]




Minor and Cofactor

Definition
o Let A be nxn

The (i,j)-minor (-1-77%!=() of A, denoted M;; is the determinant of
the (n-1) x(n-1) matrix formed by deleting the ith row and jth
column from A

The (i,j)-cofactor (gz[A-+) of A, denoted C;
Remark

o Note that C;; = £M;; and the signs (1) in the definition of
cofactor form a checkerboard pattern:

+ - + - + ..
-+ - + - .
+ - + - + ..
-+ - + - .




Example

et 1 —4]
A= 5 6

4

1 4 8 3 1
The minor of entry a,; iIs M, = }r 5
4

6
38

P:

‘56

The cofactor of a,, is C;; = (-1)¥**M;, =M, =16

Similarly, the minor of entry a,, Is Mg, =

The cofactor of a,, is C, = (-1)3"*M,, = -M,,

3
2

_4
6=
4—8

‘:16



‘ Cotactor Expansion of a 2 x 2 Matrix

= For the matrix 4 = [‘“1 ‘”2]

as1 a2

Ci1 = M1 = ag Clo = — My = —ao
Co1 = — Mo = —as Cog = My = aqy
ail a2
det(A) =
a21 422

det(A) = arjag — a12a91 a11C11 + a12Ch2
a91C91 + a99C9
a11C11 + a91Cy

= a19C12 + axCy

These are called cofactor expansions of A




Cotactor Expansion

Theorem 2.1.1 (Expansions by Cofactors)

o The determinant of an nxn matrix A can be computed by multiplying
the entries in any row (or column) by their cofactors and adding the
resulting products; that is, foreach 1 <1, j <n

det(A) = a;;Cy; + a,Cy +... + a,Cy;
(cofactor expansion along the jth column)

and
det(A) = @;;,Cj; + a,Cip t... + &,Cj;
(cofactor expansion along the ith row)
Example
3 1 0
det(A) = -52 -;1 _32 ‘ ) _2‘ (- )‘4 19, 3‘:3(-4)—(-2)(-2)+5(3):—1

(cofactor expansion along the first column)



Example

Cofactor expansion along the first row

3 1 0
—2 =4 3 —3‘
5 4 =2

—4 3 —2 3

—2 —4
A B

b 4

— 3(—4) — (1)(=11) £ 0 = —1



Example

Smart choice of row or column

A:

10 0 —1
31 2 2
10—-2 1
20 0 1

It’s easiest to use cofactor expansion along the second

column

1
det(A)=1-|1 =2
2

1 _1-(—2)-|

1 -1
2 1

l_—2(1+2)_—6
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Determinant of an L.ower Triangular

Matrix

For simplicity of notation, we prove the result fora 4 x 4

lower triangular matrix

A:

ai 0 0 0
as a» 0 0

det(4) = ag ap ag 0|

41 A4 Q43 Q44

= 411G22033 ’&44’ = 411022033044

as1 A9 0 O
as; as asz 0

a99 0 0

asr asz 0 | = ajan

42 A43 A44

ap 0 0 0

| A4 Q42 Q43 A4y |

a33 0
43 A44

11




Theorem 2.1.2

If A'is an n x n triangular matrix, then det(A) is the
product of the entries on the main diagonal of the
ma'[l’iXZ det(A) — 1192 * * * Apn

12



Usetul Technique for 2x2 and 3x3
Matrices

’ det = ay1a22 — ar2a
a
First, recopy the first and second columns as shown in the figure.
After that, compute the determinant by summing the products
an d1x G 1 2 of entries on the rightward arrows and subtracting the products
91 199 on the leftward arrows.
1 2 2
it A3 az2 A23 az1 Aaz3s az1 a2
@21 Q2 Q23| = 411 — a12 + a3
az2 ass3 asy ass aslr as2
asr az2 ass

= CL11(CL22CL33 — CL23CL32) — &12(Cl21a33 — CL236L31) + a13(a21a32 — CL22CL31)
= (111A922033 + (12093431 + A13A21032 — A13A92243] — (12021033 — Q11023032

13



2.2

Evaluating Determinants by Row Reduction




Theorem 2.2.1

et A be a square matrix. If A has a row of zeros or a
column of zeros, then det(A) = 0.

Proof:

o Since the determinant of A can be found by a cofactor expansion
along any row or column, we can use the row or column of zeros.

det(A) =0C7+0Cy+---4+0C, =0

15



Theorem 2.2.2

Let A be a square matrix. Then det(A) = det(AT)

Proof:

o Since transposing a matrix changes it columns to rows and its
rows to columns, the cofactor expansion of A along any row is
the same as the cofactor expansion of AT along the corresponding
column. Thus, both have the same determinant.

16



Theorem 2.2.3 (Elementary Row
Operations)

Let A be an nxn matrix

o If B is the matrix that results when a single row or single column
of A is multiplied by a scalar k, than det(B) = k det(A)

o If B is the matrix that results when two rows or two columns of A
are interchanged, then det(B) = - det(A)

o If B is the matrix that results when a multiple of one row of A is
added to another row or when a multiple column is added to
another column, then det(B) = det(A)

17



Example

/{CLM ka12 ka13
o1 Ay A3
asy as2 ass

= ka1 Cy + kapoCho + ka3Cis

= k(a1C11 + a1oChia + a13Ch3) = k

a1 Q22 A3| , a1l @12 di3
ajlp a2 a3l = — |A21 Q22 Q23
azy azz ass asyp azz ass

ailp aiz ais
as1 A9 493
azyp azz ass

a1 + kasy ao + kaso 13 + kCLQg

)

ail alo aps
as1 G2 G23
azy azz ass

18



Theorems

Theorem 2.2.4 (Elementary Matrices)

o Let E be an nxn elementary matrix (EF:4~%0[EH)
If E results from multiplying a row of |, by k, then det(E) = k
If E results from interchanging two rows of I, then det(E) = -1
If E results from adding a multiple of one row of I, to another, then

det(E) =1
1000
0300 _,
0010
0001

0001
0100
0010
1000

1007
0100
0010
0001

19



Theorems

Theorem 2.2.5 (Matrices with Proportional Rows or

Columns)

o If Ais a square matrix with two proportional rows or two
proportional column, then det(A) =0

-2 times Row 1
was added to Row 2

<

C

—14
—2 8

13 -24
206 —48
39 1 5
11 4 8

13 -24
00 0 0
39 1 5
11 4 8

—4 8 5

N
I =27

= ()

3 —1 4 -5
6 —2 5 2
5 8 1 4

2 —43

9 3 —12 15

20



‘ Example (Using Row Reduction to Evaluate a
Determinant)

= Evaluate det(A) where

0 1 5
A= 3 -6 9
2 6 1
= Solution:
0 5 3 _6 9 The first and second
rows of A are
det(A)=|3 -6 9=—-10 1 5 interchanged.
2 1 2 6 1
1 -2 3 A common factor of 3
—-3/0 1 5 from the first row was
taken through the
2.6 1 determinant sign

21



1 -2 3
Example det(A)=-3/0 1 5
2 6 1
1 -2 3
-2 times the first row was
=—3|0 1 ° added to the third row.
O 10 -5
1 -2 3 -10 times the second row
) was added to the third
=30 1 5 o
O O -55
1 -2 3
A common factor of -55
=(-3)(-55)0 1 5 from the last row was
0 O 1 taken through the

determinant sign.

= (—3)(-55)(1) =165

22



Example Y
100 3

270 6
063 0
731 =5
Using column operations to evaluate a determinant

Put A in lower triangular form by adding -3 times the
first column to the fourth to obtain

A =

100 0 |
det(A) = det [ 10 | = ((T)(3)(~26) = ~546

731 -26




Example

A =

(35 —26
12 -11
24 1 5

37 5 3

Using Row Operations
& Cofactor Expansion

By adding suitable multiples of the second row to the
remaining rows, we obtain

0—-1 1 3
1 2 —11
det(A) = 00 3 3l=
01 8 0
—113
=—10 33 :—(—1)
Add the first row 0 93

to the third row

33
93

Cofactor expansion along the
first column

—113
0 33
I 80

= —138

Cofactor expansion along
the-firstcotumn

24



2.3

Properties of Determinants; Cramer’s Rule




Basic Properties of Determinant

Since a common factor of any row of a matrix can be
moved through the det sign, and since each of the n row
In KA has a common factor of k, we obtain

det(kA) = kndet(A)

There is no simple relationship exists between det(A),
det(B), and det(A+B) in general.

In particular, we emphasize that det(A+B) is usually not
equal to det(A) + det(B).

26



Example

kay kao kags aip a2 ais
kas, kaoy kasy| = k3 |ag as ass
kas; kasy kass a31 a32 433
Consider
1 2 31 4 3
a=ls) B[l Avm-fiy

We have det(A) = 1, det(B) = 8, and det(A+B)=23; thus
det(A + B) # det(A) + det(B)



Example

Consider two matrices that differ only in the second row

ailp aig ajlp aig
A — B —
ao1 A9 521 522

det(A) —+ det(B) — (CL116L22 — a12a21) + <a11b22 — a12b21)

= CL11<CL22 + b22) — al?(am + b21)

o 11 12
= det
o1 + bop @99 + boo

det [an a12] + det [Cln CL12] — det [ ail a2 ]

as1 A9 bo1 boo a1 + boy a9 + boo

28



Theorems 2.3.1

Let A, B, and C be nxn matrices that differ only in a single row, say
the r-th, and assume that the r-th row of C can be obtained by
adding corresponding entries in the r-th rows of A and B. Then

det(C) = det(A) + det(B)
The same result holds for columns.

Example
(1 7 5 (1 7 5] (1 7 5]
det| 2 0 3 |=detf 2 0 3|+detf 2 0 3
1+0  4+1 7+(-1) 1 4 7 0 1 -1

29



Theorems

Lemma 2.3.2
o If B is an nxn matrix and E is an nxn elementary matrix, then

det(EB) = det(E) det(B)

Remark:

o IfBisannxn matrix and E;, E,, ..., E,, are nxn elementary
matrices, then

det(E, E, - - -E, B) = det(E,) det(E,) - - - det(E,) det(B)

30



Proof of Lemma 2.3.2

If B Is an nxn matrix and E is an nxn elementary matrix, then
det(EB) = det(E) det(B)

We shall consider three cases, each depending on the row
operation that produces matrix E.

Case 1. If E results from multiplying a row of |, by k, then by
Theorem 1.5.1, EB results from B by multiplying a row by k;
so from Theorem 2.2.3a we have
det(EB) = k det(B)
From Theorem 2.2.4a, we have det(E) =k, so
det(EB) = det(E) det(B)

Cases 2 and 3. E results from interchanging two rows of |, or
from adding a multiple of one row to another.

31



Theorems

Theorem 2.3.3 (Determinant Test for Invertibility)
o A square matrix A is invertible if and only if det(A) = 0

Proof: Let R be the reduced row-echelon form of A.
R=F.---E>E A
det(R) = det(E,) - - - det(Fy) det(E;) det(A)

From Theorem 2.2.4, the determinants of the elementary

matrices are all nonzero. Thus, det(A) and det(R) are both
zero or both nonzero.

32



Proof of Theorem 2.3.3

If A is invertible, then by Theorem 1.6.4, we have R = I,
so det(R) =1 # 0 and consequently det(A) # 0.

Conversely, iIf det(A) # 0, then det(R) # 0, SO R cannot
have a row of zeros. It follows from Theorem 1.4.3 that
R=I, so A is invertible by Theorem 1.6.4.

33



‘ Example: Determinant Test for

Invertibility
= Since the first and third rows are proportional, det(A) =0

1 23
A= 101)
246

= A s not invertible.

34



Theorems

Theorem 2.3.4
o If A and B are square matrices of the same size, then

det(AB) = det(A) det(B)

Theorem 2.3.5
o If Ais invertible, then

det(A) = —

det(A)

35



Proof of Theorem 2.3.4

If the matrix A is not invertible, then by Theorem 1.6.5
neither is the product AB.

Thus, from Theorem 2.3.3, we have det(AB) = 0 and
det(A) =0, so it follows that det(AB) = det(A) det(B).
Now assume that A is invertible. By Theorem 1.6.4, the
matrix A is expressible as a product of elementary
matrices, say

A=F,E,---E,
AB=F\F5---E,.B

36



Proof of Theorem 2.3.4

AB=FEF,---E.B

¥
det(AB) = det(FE;) det(Ey) - - - det(E,) det(B)
¥
det(AB) = det(E1Es - - - E,.) det(B)
A 4

det(AB) = det(A) det(B)

37



Proof of Theorem 2.3.5

Since A1A =1, it follows that det(A-*A)=det(l).
Therefore, we must have det(A-1)det(A) = 1.

Since det(A) # 0, the proof can be completed by dividing
through by det(A).

38



Example

If one multiplies the entries in any row by the corresponding
cofactors from a different row, the sum of these products is

always zero.
A =

a21 Q22 Q23

aipr a2 ais
as1p a3z ass

Consider the quantity a;,Cs; + a15Css + a13C33 =?
Construct a new matrix A’ by replacing the third row of A with
another copy of the first row

ail ai2 ais

/
A = a21 Q22 Q23
ailp aiz2 ais

39



a21 Q22 Q23 ao1 Q22 Q23
azy azz Aass| ailp aiz2 aiy

a1l a2 Cl13_ a11 a2 Aais
Example [ . [ }

Since the first two rows of A and A’ are the same, and
since the computations of C,,, Cs,, Cas, Cs;°, Cs,’°, and
C,3” involve only entries from the first two rows of A and
A’, 1t follows that

(51 = Cél Csp = CL/%Z Cy3 = 02/33
Since A’ has two 1dentical rows, det(A’) =0

By evaluating det(A’) by cofactor expansion along the
third row gives

det(A’) = CLHOél + a120§2 -+ a130§3 = CLHCgl + CL12032 + CL13033 =0

40



Definition

If A'ls any n x n matrix, and C;; Is the cofactor of a;;, then
the matrix is called the matrix of cofactors from A (Ex[X

J-REfE).

_Cll C(12 Cln_
021 C(22 C2n

_Cnl Cn2 U Cnn_

The transpose of this matrix is called the adjoint of A (£
W& %EfE) and is denoted by adj(A)

_Cll C(21 Cnl
012 C(22 Cn2

_Cln CZn CC Cnn_

41



Adjoint of a 3x3 Matrix

Cofactors of A are
Ciiy=12 C15=6 Ci3 = —16
Coy=4 Oy =2 Caz = 16
Cs51=12 Cs=—-10 (53 =16
The matrix of cofactors is [12 6 16}

4 2 16
12 =10 16

6 2 —10

The adjointof A | 12 4 12
—16 16 16

42



det(A) =a,C;, +a,C, +---+,,C,

Theorems

Aadj(A) = det(A) |

Theorem 2.3.6 (Inverse of a Matrix using its Adjoint)

o If Ais an invertible matrix, then ao+- 2 adj(A)
det(A)

43



Proof of Theorem 2.3.6

If A is an invertible matrix, then A™ = adj(A)

det(A)
We show first that Aadj(A) = det(A)l

11 diz2 c-c Qin| )
asr @z -+ agy| |Ci Cop -+ |Cit -+ O
Aadj(a)= | 1T |G O G G
a;1 ;2 - Qip : : : : : :
: : : _Cln CQn C]n Cnn_
_anl Ap2 - a’rm_

The entry in the ith row and jth column of Aadj(A) is

aﬂC’jl + CLZ'QCJQ + -0+ CLijn

44



aix a2 -+ Aip

Proof of Theorem 2.3.6 U

;1 Qi - i

aﬂC’ﬂ + CLZ'QCJ'Q + -0+ CLijn

| Ap1 Ap2 - Qpn

If =), then it is the cofactor expansion of det(A) along the ith
row of A.

If 1 £, then the @’s and the cofactors come from different rows
of A, so the value 1s zero. Therefore,

(det(A) 0 -+ 0
Aadj(ay= | O A 0 ey
0 0 .- det(A)
Since A is invertible, det(A)# 0. Therefore
1 | I
Jorray A A =1 mmp A[det(A)adj <A)} =1 |

Al

Multiplying both sides on the left by A yields Jorra) YA

45



‘ Example

(12 4 12 ]
The adjointof A= 6 2 —10
|—16 16 16 |

(12 4 12 ]

6 2 —10

16 16 16 |

46



Theorem 2.3.7 (Cramer’s Rule)

If AX = b Is a system of n linear equations in n unknowns
such that det(A) = 0, then the system has a unique
solution. This solution is

L _Get(A) _det(A) _ det(A)
Fodet(A) T Y det(A) T " det(A)

where A; Is the matrix obtained by replacing the entries in
the jth column of A by the entries in the matrix b = [b,
b, -~ by]"

47



Proof of Theorem 2.3.7

If det(A) # 0, then A is invertible, and by Theorem 1.6.2,
x = A'b is the unique solution of Az = b. Therefore, by
Theorem 2.3.6, we have

48



Proof of Theorem 2.3.7

01Oy + 0o Cop 4+ -+ 5,01 |
_ 1 b1Co + bCs + - -+ b,Co
det(A) ‘

xIr

_blcln + bZOQn + e annn_

The entry In the jth row of x Is therefore
B blCU + bQCQj + -+ annj

L

det(A)

Now let )
ai;p aig -+ arj—1 b A1j4+1 - Aln
a1 A2 -+ A25—1 by a2j41 - A2n

Aj = T
_anl Ap2 - Apj—1 bn Apj+1 - Apn




Proof of Theorem 2.3.7

Since A differs form A only in the jth column, it follows
that the cofactors of entries by, by, ..., b, In A; are the
same as the cofactors of the corresponding entries in the
jth column of A.

The cofactor expansion of det(A;) along the jth column is
therefore det(A;) = b1Cy; + b2Coj + - - - + b,Ch;
Substituting this result gives
det(Aj)
Tj =
det(A)

50



Example

Use Cramer’s rule to solve
X, + +2X,=6
— 3%, +4X, +6X, =30
— X, —2X, +3X; =8
Since

1 0 2] [ 6 0 2] 1 6

A=| -3 4 6[A=[30 4 6 [A=[-330 6A-=

-1 -2 3| 8 -2 3 -1 8 3

Thus,

-3 4 30

1 0 6]

-1 -2 8

, _Get(A) -40_-10 ~_det(A) 72 18 _det(A) 152 _38

Yodet(A) 44 11777 det(A) 44 1177°  det(A)

44 11
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Theorem 2.3.8 (Equivalent

Statements)
If A Is an nxn matrix, then the following are
equivalent
a Ais invertible.
o Ax =0 has only the trivial solution
o The reduced row-echelon form of Aas |
o Ais expressible as a product of elementary matrices
o AX = Db Is consistent for every nx1 matrix b
o Ax = b has exactly one solution for every nx1 matrix b
o det(A) =0
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