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4.1
Real Vector Spaces
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Definition (Vector Space) 

 Let V be an arbitrary nonempty set of objects on which two 
operations are defined:
 Addition
 Multiplication by scalars

 If the following axioms (公理) are satisfied by all objects u, 
v, w in V and all scalars k and l, then we call V a vector 
space (向量空間) and we call the objects in V vectors. 
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Definition (Vector Space)

1. If u and v are objects in V, then u + v is in V.
2. u + v = v + u
3. u + (v + w) = (u + v) + w
4. There is an object 0 in V, called a zero vector for V, such that 0 + u

= u + 0 = u for all u in V. 
5. For each u in V, there is an object -u in V, called a negative of u, 

such that u + (-u) = (-u) + u = 0.
6. If k is any scalar and u is any object in V, then ku is in V. 
7. k (u + v) = ku + kv
8. (k + l) u = ku + lu 
9. k (lu) = (kl) (u)
10. 1u = u
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Remarks 

 Depending on the application, scalars may be real numbers or 
complex numbers. 
 Vector spaces in which the scalars are complex numbers are 

called complex vector spaces (複數向量空間), and those in 
which the scalars must be real are called real vector spaces (實數
向量空間). 

 The definition of a vector space specifies neither the nature of 
the vectors nor the operations. 
 Any kind of object can be a vector, and the operations of addition 

and scalar multiplication may not have any relationship or 
similarity to the standard vector operations on Rn. 

 The only requirement is that the ten vector space axioms be 
satisfied.



Show a Set as a Vector Space

 Step 1: Identify the set V of objects that will become vectors. 
 Step 2: Identify the addition and scalar multiplication 

operations on V. 
 Step 3. Verify Axioms 1 and 6. Axiom 1 is called closure 

under addition (加法封閉性), and Axiom 6 is call closure 
under scalar multiplication (純量乘法封閉性). 

 Step 4: Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold. 
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Example: The Zero Vector Space

 Let V consist of a single object, which we denote by 0, 
and define 0 + 0 = 0 and k0 = 0 for all scalars k. 

 It’s easy to check that all the vector space axioms are 
satisfied. 

 We call this the zero vector space. 
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Example (Rn Is a Vector Space)

 The set V = Rn with the standard operations of addition 
and scalar multiplication is a vector space. 

 Axioms 1 and 6 follow from the definitions of the 
standard operations on Rn; the remaining axioms follow 
from Theorem 3.1.1.

 The three most important special cases of Rn are R (the 
real numbers), R2 (the vectors in the plane), and R3 (the 
vectors in 3-space).
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Example (22 Matrices)

 Show that the set V of all 22 matrices with real entries is a vector 
space if vector addition is defined to be matrix addition and vector 
scalar multiplication is defined to be matrix scalar multiplication.

 Let                            and 

 To prove Axiom 1, we must show that u + v is an object in V; that 
is, we must show that u + v is a 22 matrix.
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Example 

 Similarly, Axiom 6 hold because for any real number k we have

so that ku is a 22 matrix and consequently is an object in V.
 Axioms 2 follows from Theorem 1.4.1a since

 Similarly, Axiom 3 follows from part (b) of that theorem; and 
Axioms 7, 8, and 9 follow from part (h), (j), and (e), respectively.
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Example

 To prove Axiom 4, let 

Then

Similarly, u + 0 = u.
 To prove Axiom 5, let

Then

Similarly, (-u) + u = 0.
 For Axiom 10, 1u = u.
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Example (Vector Space of mnMatrices)

 The previous example is a special case of a more general 
class of vector spaces. 

 The arguments in that example can be adapted to show 
that the set V of all mn matrices with real entries, 
together with the operations matrix addition and scalar 
multiplication, is a vector space. 

 The mn zero matrix is the zero vector 0, and if u is the 
mn matrix U, then matrix –U is the negative –u of the 
vector u. 

 We shall denote this vector space by the symbol Mmn
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Example (Vector Space of Real-Valued Functions)

 Let V be the set of real-valued functions defined on 
the entire real line (-,). If f = f (x) and g = g (x) are 
two such functions and k is any real number, defined 
the sum function f + g and the scalar multiple k f, 
respectively, by (f + g)(x) = f(x) + g(x) and (k f)(x)=kf(x).

 In other words, the value of the function f + g at x is 
obtained by adding together the values of f and g at x 
(Figure 4.1.1 a). Similarly, the value of k f at x is k
times the value of f at x (Figure 4.1.1 b). This vector 
space is denoted by F(-,). If f and g are vectors in 
this space, then to say that f = g is equivalent to 
saying that f(x) = g(x) for all x in the interval (-,). 

 The vector 0 in F(-,) is the constant function that 
identically zero for all value of x. The negative of a 
vector f is the function –f = -f(x). Geometrically, the 
graph of –f is the reflection of the graph of f across 
the x-axis  (Figure 4.1.1.c).
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Example (Not a Vector Space)

 Let V = R2 and define addition and scalar multiplication 
operations as follows: If u = (u1, u2) and v = (v1, v2), then 
define 

u + v = (u1 + v1, u2 + v2)
and if k is any real number, then define

k u = (k u1, 0)
 There are values of u for which Axiom 10 fails to hold. 

For example, if u = (u1, u2) is such that u2 ≠ 0,then
1u = 1 (u1, u2) = (1 u1, 0)  = (u1, 0) ≠ u

 Thus, V is not a vector space with the stated operations.



An Unusual Vector Space

 Let V be the set of positive real numbers, and define the 
operation on V to be 

u+v = uv, ku = uk

 For example: 1+1 = 1 and 2(1) = 12 = 1
 The set V with these operations satisfies the 10 vector space 

axioms and hence is a vector space! 
 Axiom 4: the zero vector in this space is the number 1 since u+1=u
 Axiom 5: the negative of a vector u is its reciprocal (-u = 1/u) since 

u+(1/u)=u(1/u) = 1 = 0
 Axiom 7: k(u+v) = (uv)k = ukvk = (ku) + (kv)

16
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Every Plane Through the Origin Is a 
Vector Space
 Check all the axioms!

 Let V be any plane through the origin in R3. Since R3 itself 
is a vector space, Axioms 2, 3, 7, 8, 9, and 10 hold for all 
points in R3 and consequently for all points in the plane V. 

 We need only show that Axioms 1, 4, 5, and 6 are satisfied.



Every Plane Through the Origin Is a 
Vector Space
 Since the plane V passes through the origin, it has an equation 

of the form ax + by + cz = 0. If u = (u1, u2, u3) and v = (v1, v2, 
v3) are points in V, then au1 + bu2 + cu3 = 0 and av1 + bv2 + 
cv3 = 0. Adding these equations gives a(u1 + v1) +b(u2 + v2) +c
(u3 + v3) = 0. 

 Axiom 1: u + v = (u1 + v1, u2 + v2, u3 + v3); thus u + v lies in 
the plane V.

 Axioms 5: Multiplying au1 + bu2 + cu3 = 0 through by -1 
gives a(-u1) + b(-u2) + c(-u3) = 0 ; thus, -u = (-u1, -u2, -u3) lies 
in V.

18
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Theorem 4.1.1

 Let V be a vector space, u be a vector in V, and k a 
scalar; then:
 0 u = 0
 k 0 = 0
 (-1) u = -u
 If k u = 0 , then k = 0 or u = 0.



Proof of Theorem 4.1.1(a)

 We can write
0u + 0u = (0+0)u [Axiom 8]

= 0u [Property of the number 0]
 By Axiom 5 the vector 0u has a negative, -0u. Adding 

this negative to both sides above yields 
[0u + 0u] + (-0u) = (0+0)u + (-0u) [Axiom 3]

0u + 0 = 0 [Axiom 5]
0u = 0 [Axiom 4]
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Proof of Theorem 4.1.1(c)

 To show that (-1)u = -u, we must demonstrate that u + 
(-1)u = 0. 

 To see this, we observe that 
u + (-1)u = 1u + (-1)u [Axiom 10]

= (1 + (-1))u [Axiom 8]
= 0u [Property of numbers]

= 0 [Property (a) above]

21



4.2
Subspaces
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Subspaces (子空間)

 Definition
 A subset W of a vector space V is called a subspace of V if W is itself a 

vector space under the addition and scalar multiplication defined on V.

 In general, one must verify the ten vector space axioms to 
show that a set W with addition and scalar multiplication 
forms a vector space. 

 However, some axioms are inherited from V. For example, 
there is no need to check Axiom 2 (u+v=v+u) for W because 
it holds for all vectors in V and consequently for all vectors in 
W. 
 Other axioms inherited by W from V are 3, 7, 8, 9, and 10. 
 Only Axioms 1, 4, 5, 6 are needed to be checked. 



Theorem 4.2.1

 Theorem 4.2.1
 If W is a set of one or more vectors from a vector space V, 

then W is a subspace of V if and only if the following 
conditions hold:
a) If u and v are vectors in W, then u + v is in W.
b) If k is any scalar and u is any vector in W , then ku is in W.
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Proof of Theorem 4.2.1

 If W is a subspace of V, then all the vector space axioms 
are satisfied, including Axioms 1 and 6, which are 
precisely conditions (a) and (b). 

 Conversely, assume conditions (a) and (b) hold. Since 
these conditions are vector space Axioms 1 and 6, we 
need only show that W satisfies the remaining eight 
axioms. 
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Axiom 1: If u and v are objects in V, then u + v is in V.
Axiom 6: If k is any scalar and u is any object in V, then ku is in V. 



Proof of Theorem 4.2.1

 Axioms 2, 3, 7, 8, 9, and 10 are automatically satisfied by 
the vectors in W since they are satisfied by all vectors in 
V. 
 Therefore, we need only verify Axioms 4 and 5. 

 Let u be any vector in W. By condition (b), ku is in W for 
every scalar k. 

 Setting k=0, 0u = 0 is in W, and setting k=-1, (-1)u = -u is 
in W – Axioms 4 and 5 hold in W
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Remark

 Theorem 4.2.1 states that W is a subspace of V if and 
only if W is a closed under addition (condition (a)) 
and closed under scalar multiplication (condition (b)).

27
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Example 

 Let W be any plane through the 
origin and let u and v be any 
vectors in W.
 u + v must lie in W since it is the 

diagonal of the parallelogram 
determined by u and v, and k u
must line in W for any scalar k
since k u lies on a line through u. 

 Thus, W is closed under addition 
and scalar multiplication, so it is 
a subspace of R3.
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Example 

 A line through the origin of R3 is a subspace of R3.

 Let W be a line through the origin of R3.
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Example (Not a Subspace) 

 Let W be the set of all points 
(x, y) in R2 such that x  0 
and y  0. These are the 
points in the first quadrant. 

 The set W is not a subspace 
of R2 since it is not closed 
under scalar multiplication. 

 For example, v = (1, 1) lines 
in W, but its negative (-1)v = 
-v = (-1, -1) does not.
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Remarks

 Every nonzero vector space V has at least two subspace: V itself is a 
subspace, and the set {0} consisting of just the zero vector in V is a 
subspace called the zero subspace.

 Examples of subspaces of R2 and R3:
 Subspaces of R2:

 {0}
 Lines through the origin
 R2

 Subspaces of R3:
 {0}
 Lines through the origin
 Planes through origin
 R3

 They are actually the only subspaces of R2 and R3

Think about “set” and “empty set”!
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Subspaces of Mnn

 Since the sum of two symmetric matrices is symmetric, 
and a scalar multiple of a symmetric matrix is symmetric. 
Thus, the set of nn symmetric matrices is a subspace of 
the vector space Mnn of nn matrices. 

 Similarly, the set of nn upper triangular matrices, the set 
of nn lower triangular matrices, and the set of nn
diagonal matrices all form subspaces of Mnn, since each of 
these sets is closed under addition and scalar 
multiplication.



A Subset of Mnn That is Not a 
Subspace
 The set W of invertible n × n matrices is not a subspace of 

Mnn. 

 The matrix 0U is the 2 × 2 zero matrix and hence is not 
invertible – not closure under scalar multiplication. 

 The matrix U+V has a column of zeros, so it is not 
invertible – not closure under addition. 
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Theorem 4.2.2

 If W1, W2, …, Wr are subspaces of a vector space V, then 
the intersection of these subspaces is also a subspace of V. 

 Proof: 
 Let W be the intersection of the subspaces W1, W2, …, Wr. 

It’s not empty because each of these subspaces contains 
the zero vector of V.

 To prove closure under addition, let u and v be vectors in 
W. It follows that u and v also lie in each of these 
subspaces. Since these subspaces are all closed under 
addition, they all contain the vector u+v and hence so dos 
W.

34



35

Linear Combination

 Definition
 A vector w is a linear combination of the vectors v1, v2,…, vr if it 

can be expressed in the form w = k1v1 + k2v2 + · · · + kr vr where 
k1, k2, …, kr are scalars.

 Vectors in R3 are linear combinations of i, j, and k
 Every vector v = (a, b, c) in R3 is expressible as a linear 

combination of the standard basis vectors
i = (1, 0, 0),  j = (0, 1, 0),  k = (0, 0, 1)

since 
v =  a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = a i + b j + c k
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Theorem 4.2.3

 If S={w1, w2, …, wr} is a nonempty set of vectors in 
a vector space V, then:
 The set W of all linear combinations of the vectors in S

is a subspace of V.
 W is the smallest subspace of V that contain all the 

vectors in S in the sense that any other subspace that 
contains those vectors contains W.



Proof of Theorem 4.2.3 (a)

 To show that W is a subspace of V, we must prove that it is 
closed under addition and scalar multiplication. 

 There is at least one vector in W, namely 0, since 0 = 0v1 + 0v2
+ … + 0vr. 

 If u and v are vectors in W, then
u = c1w1 + c2w2 + … + crwr

v = k1w1 + k2w2 + … + krwr

where c1, c2, …, cr, k1, k2, …, kr are scalars. 
u + v = (c1+k1)w1 + (c2+k2)w2 + … + (cr+kr)wr

ku = (kc1)w1 + (kc2)w2 + … + (kcr)wr
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Proof of Theorem 4.2.3 (b)

 Each vector wi is a linear combination of w1, w2, …, wr
since we can write 

wi = 0w1 + 0w2 + … + 1wi + … + 0wr

 Therefore, the subspace W contains each of the vectors 
w1, w2, …, wr. Let W’ be any other subspace that contains 
w1, w2, …, wr. Since W’ is closed under addition and 
scalar multiplication, it must contain all linear 
combination of w1, w2, …, wr. Thus, W’ contains each 
vector of W. 
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Span (展開)

 Definition
 If S = {w1, w2, …, wr} is a set of vectors in a vector space 

V, then the subspace W of V containing of all linear 
combination of these vectors in S is called the space 
spanned by w1, w2, …, wr, and we say that the vectors w1, 
w2, …, wr span W. 

 To indicate that W is the space spanned by the vectors in the 
set S = {w1, w2, …, wr}, we write W = span(S) or W = 
span{w1, w2, …, wr}.

39
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Example 

 If v is a nonzero vector in R2 and R3, then span{v}, which is the set 
of all scalar multiples kv, is the line determined by v.

 If v1 and v2 are non-collinear vectors in R3 with their initial points at 
the origin, then span{v1, v2}, which consists of all linear 
combinations k1v1 + k2v2 is the plane determined by v1 and v2. 



A Spanning Set for Pn

 The polynomials 1, x, x2, …, xn span the vector space Pn
since each polynomial p in Pn can be written as 

p=a0 + a1x + … + anxn

which is a linear combination of 1, x, x2, …, xn

 We can denote this by writing 
Pn=span{1, x, x2, …, xn}

41
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Example 

Consider the vectors u = (1, 2, -1) and v = (6, 4, 2) in R3. Show 
that w = (9, 2, 7) is a linear combination of u and v and that w
= (4, -1, 8) is not a linear combination of u and v.

Solution.
In order for w to be a linear combination of u and v, there must 

be scalars k1 and k2 such that w = k1u + k2v;
(9, 2, 7) = (k1 + 6k2, 2k1 + 4k2, -k1 + 2k2)

Equating corresponding components gives
k1   + 6k2 = 9
2k1+ 4k2 = 2
-k1 + 2k2 = 7

Solving this system yields k1 = -3, k2 = 2, so
w = -3u + 2v



Example 

Similarly, for w’ to be a linear combination of u and v, there must 
be scalars k1 and k2 such that w'= k1u + k2v;

(4, -1, 8) = k1(1, 2, -1) + k2(6, 4, 2)
or

(4, -1, 8) = (k1 + 6k2, 2k1 + 4k2, -k1 + 2k2)
Equating corresponding components gives

k1    + 6k2 = 4
2 k1+ 4k2 = -1
- k1 + 2k2 = 8

This system of equation is inconsistent, so no such scalars k1 and 
k2 exist. Consequently, w' is not a linear combination of u and 
v.
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Testing for Spanning

 Determine whether v1=(1,1,2), v2=(1,0,1), and v3=(2,1,3) 
span the vector space R3. 

 Solution: we must determine whether an arbitrary vector 
b=(b1,b2,b3) in R3 can be expressed as a linear 
combination b=k1v1+k2v2+k3v3. 
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Testing for Spanning

 This problem reduces to check whether this system is 
consistent

 Check the coefficient matrix

 The matrix A has the determinant equal to zero. This 
system is inconsistent. No solution can be found for k1,k2, 
and k3. Therefore, v1, v2, v3 do not span R3. 
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Solution Space

 Solution Space of Homogeneous Systems
 If Ax = b is a system of the linear equations, then each vector x

that satisfies this equation is called a solution vector of the 
system.

 Theorem 4.2.4 shows that the solution vectors of a homogeneous 
linear system form a vector space, which we shall call the 
solution space of the system.

 Theorem 4.2.4
 If Ax = 0 is a homogeneous linear system of m

equations in n unknowns, then the set of solution 
vectors is a subspace of Rn.



Proof of Theorem 4.2.4

 Let W be the set of solution vectors. There is at least one 
vector in W, namely 0. 

 To show that W is closed under addition and scalar 
multiplication, we must show that if x and x’ are any 
solution vectors and k is any scalar, then x+x’ and kx are 
also solution vectors. 

Ax = 0 and Ax’ = 0
A(x+x’) = Ax + Ax’ = 0 + 0 = 0

A(kx) = kAx = k0 = 0
Which proves that x+x’ and kx are solution vectors. 
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Example 

 Find the solution spaces of the linear systems.

 Each of these systems has three unknowns, so the solutions form 
subspaces of R3. 

 Geometrically, each solution space must be a line through the origin, 
a plane through the origin, the origin only, or all of R3.
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Example 

Solution.
(a) x = 2s - 3t,   y = s,   z = t

x = 2y - 3z  or  x – 2y + 3z = 0
This is the equation of the plane through the origin with 
n = (1, -2, 3) as a normal vector.
(b) x = -5t ,  y = -t,  z =t
which are parametric equations for the line through the origin parallel 

to the vector v = (-5, -1, 1).
(c) The solution is x = 0, y = 0, z = 0, so the solution space is the origin 

only, that is {0}.
(d) The solution are x = r ,  y = s, z = t, where r, s, and t have arbitrary 

values, so the solution space is all of R3.



Remark

 Whereas the solution set of every homogeneous system of 
m equations in n unknowns is a subspace of Rn, it is never
true that the solution set of a nonhomogeneous system of 
m equations in n unknowns is a subspace of Rn. 

 First, the system may not have any solutions at all
 Second, if there are solutions, then the solution set will 

not be closed under either addition or under scalar 
multiplication. 
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Remark

 Spanning sets are not unique. For example, any nonzero 
vector on the line will span that line. 

 Theorem 4.2.5: If S={v1,v2, …, vr} and S’={w1,w2,…,wk} 
are nonempty sets of vectors in a vector space V, then
span{v1,v2, …, vr} = span{w1,w2,…,wk} 
if and only if each vector in S is a linear combination of 
those in S’, and each vector in S’ is a linear combination 
of those in S. 
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4.3
Linear Independence
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Linearly Dependent & Independent

 Definition
 If S = {v1, v2, …, vr} is a nonempty set of vector, then the vector 

equation k1v1 + k2v2 + … + krvr = 0 has at least one solution, 
namely k1 = 0,  k2 = 0, … , kr = 0. (trivial solution)

 If this is the only solution, then S is called a linearly independent
(線性獨立) set. If there are other solutions, then S is called a 
linearly dependent (線性相關) set.

 Examples 
 If v1 = (2, -1, 0, 3), v2 = (1, 2, 5, -1), and v3 = (7, -1, 5, 8).
 Then the set of vectors S = {v1, v2, v3} is linearly dependent, 

since 3v1 + v2 – v3 = 0.
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Example 

 Let i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) in R3.
 Consider the equation k1i + k2j + k3k = 0 

 k1(1, 0, 0) + k2(0, 1, 0) + k3(0, 0, 1) = (0, 0, 0)
 (k1, k2, k3) = (0, 0, 0)
 The set S = {i, j, k} is linearly independent. 

 Similarly the vectors 
e1 = (1, 0, 0, …,0), e2 = (0, 1, 0, …, 0), …, en = (0, 0, 0, …, 1) 

form a linearly independent set in Rn.

 Remark:
 To check whether a set of vectors is linear independent or not, write 

down the linear combination of the vectors and see if their coefficients 
all equal zero.
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Example 

 Determine whether the vectors 
v1 = (1, -2, 3), v2 = (5, 6, -1), v3 = (3, 2, 1) 

form a linearly dependent set or a linearly independent set.

 Solution
 Let the vector equation k1v1 + k2v2 + k3v3 = 0

 k1(1, -2, 3) + k2(5, 6, -1) + k3(3, 2, 1) = (0, 0, 0)
 k1 + 5k2 + 3k3 = 0

-2k1 + 6k2 + 2k3 = 0
3k1  – k2  +   k3 = 0 

 det(A)  = 0
 The system has nontrivial solutions
 v1,v2, and v3 form a linearly dependent set

Ax = 0 has only the trivial solution 
det(A) ≠ 0



Example

 Determine whether the vectors v1=(1,2,2,-1), v2=(4,9,9,-4), 
v3=(5,8,9,-5) in R4 are linearly independent or not. 

 Solution: 
 Check k1v1 + k2v2 + k3v3 = 0. 
 k1(1,2,2,-1) + k2(4,9,9,-4) + k3(5,8,9,-5) = (0,0,0,0)

 The coefficient matrix is invertible. Thus this system has only the trivial 
solution, and v1, v2, v3 are linearly independent. 
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Theorem 4.3.1 

 Theorem 4.3.1
 A set S with two or more vectors is:
 Linearly dependent if and only if at least one of the 

vectors in S is expressible as a linear combination of the 
other vectors in S.

 Linearly independent if and only if no vector in S is 
expressible as a linear combination of the other vectors 
in S.



Proof of Theorem 4.3.1

 Let S={v1,v2,…,vr} be a set with two or more vectors. If we 
assume that S is linearly dependent, then there are scalars k1, 
k2, …, kr, not all zero, such that 

k1v1 + k2v2 + … + krvr = 0
 To be specific, suppose that           . Then it can be rewritten as

which expresses v1 as a linear combination of the other vectors 
in S. 

 Similarly, if            for some j=2,3,…, r, then vj is expressible 
as a linear combination of the other vectors in S. 
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Proof of Theorem 4.3.1

 Conversely, let us assume that at least one of the vectors in S is 
expressible as a linear combination of the other vectors. To 
be specific, suppose that 

v1 = c2v2+c3v3+…+crvr

 So v1 – c2v2 – c3v3 - … - crvr = 0
 If follows that S is linearly dependent since the equation

k1v1+k2v2+…+krvr = 0
is satisfied by k1=1, k2=-c2, …, kr=-cr

which are not all zero. The proof in the case where some 
vector other than v1 is expressible as a linear combination of 

the other vectors in S is similar. 
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Example

 The vectors v1 = (2,-1,0,3), v2=(1,2,5,-1), and v3=(7,-
1,5,8)

 From Theorem 4.3.1, at least one of these vectors is 
expressible as a linear combination of the other two. 

 3v1 + v2 – v3 = 0. 
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Example

 The vectors i=(1,0,0), j=(0,1,0), and k=(0,0,1)
 Suppose that k is expressible as k = k1i + k2j
 Then, in terms of components, 

(0,0,1) = k1(1,0,0) + k2(0,1,0)
(0,0,1) = (k1,k2,0)

 The last equation is not satisfied by any values of k1 and 
k2, so k cannot be expressed as a linear combination of i
and j. 
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Theorem 4.3.2

 Theorem 4.3.2
 A finite set of vectors that contains the zero vector 

0 is linearly dependent.
 A set with exactly one vector is linearly 

independent if and only if that vector is not 0. 
 A set with exactly two vectors is linearly 

independently if and only if neither vector is a 
scalar multiple of the other.
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Proof of Theorem 4.3.2(a)

 For any vectors v1, v2, …, vr, the set S={v1, v2, …, vr, 0} 
is linearly dependent since the equation 

0v1 + 0v2 + …+ 0vr + 1(0) = 0
expresses 0 as a linear combination of the vectors in S with 

coefficients that are not all zero. 
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Geometric Interpretation of Linear 
Independence
 In R2 and R3, a set of two vectors is linearly independent if and 

only if the vectors do not lie on the same line when they are 
placed with their initial points at the origin. 

 In R3, a set of three vectors is linearly independent if and only 
if the vectors do not lie in the same plane when they are placed 
with their initial points at the origin.



Theorem 4.3.3

 Theorem 4.3.3
 Let S = {v1, v2, …, vr} be a set of vectors in Rn. If 

r > n, then S is linearly dependent.
 Proof

 Suppose that 
v1 = (v11, v12, …, v1n)
v2 = (v21, v22, …, v2n)

…
vr = (vr1, vr2, …, vrn)
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Proof of Theorem 4.3.3

 Consider the equation k1v1+k2v2+…+krvr=0. 
 We express both sides of this equation in terms of 

components and then equate corresponding components, 
we obtain the system

 This is a homogeneous system of n equations in the r
unknowns k1, …, kr. Since r > n, it follows from Theorem 
1.2.2 that the system has nontrivial solutions. Therefore, S
is a linearly dependent set. 
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4.4
Coordinates and Basis
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Nonrectangular Coordinate Systems

 The coordinate system establishes a one-to-one correspondence
between points in the plane and ordered pairs of real numbers. 

 Although perpendicular coordinate axes are the most common, any 
two nonparallel lines can be used to define a coordinate system in 
the plane.
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Nonrectangular Coordinate Systems

 A coordinate system can be 
constructed by general vectors:
 v1 and v2 are vectors of length 1 

that points in the positive 
direction of the axis: 

 Similarly, the coordinates (a, b, c) 
of the point P can be obtained by 
expressing       as a linear 
combination of the vectors

1 2OP a b v v


OP

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Nonrectangular Coordinate Systems

 Informally stated, vectors that 
specify a coordinate system are 
called “basis vectors” for that 
system. 

 Although we used basis 
vectors of length 1 in the 
preceding discussion, this is 
not essential – nonzero vectors 
of any length will suffice.
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Basis

 Definition
 If V is any vector space and S = {v1, v2, …,vn} is a set of vectors 

in V, then S is called a basis (基底) for V if the following two 
conditions hold:
 S is linearly independent.
 S spans V.



Example

 The standard basis for Rn

e1=(1,0,…,0), e2 = (0,1,0,…,0), …, en = (0,0,…,1)
 Show that v1=(1,2,1), v2=(2,9,0), v3=(3,3,4) form a basis for R3

 Solution: 
 check that c1v1+c2v2+c3v3 = 0 has only trivial solution. (linearly 

independent)
 Check every vector b=(b1,b2,b3) can be expressed as c1v1+c2v2+c3v3 = b

(span)

 Because                   , v1,v2, and v3 form a basis for R3. (Theorem 2.3.8)
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Definition

 A vector space that cannot be spanned by finitely many 
vectors is said to be infinite-dimensional, whereas those 
that can are said to be finite-dimensional. 
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Theorem 4.4.1

 Theorem 4.4.1 (Uniqueness of Basis Representation)
 If S = {v1, v2, …,vn} is a basis for a vector space V, then every 

vector v in V can be expressed in the form 
v = c1v1 + c2v2 + … + cnvn

in exactly one way.
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Proof of Theorem 4.4.1

 Since S spans V, it follows from the definition of a 
spanning set that every vector in V is expressible as a 
linear combination of the vectors in S. 

 To see that there is only one way to express a vector as a 
linear combination of the vectors in S, suppose that some 
vector v can be written as

v = c1v1 + c2v2 + … + cnvn

 And also as
v = k1v1 + k2v2 + … + knvn
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Proof of Theorem 4.4.1

 Subtracting the second equation from the first gives 
0 = (c1-k1)v1+(c2-k2)v2+…+(cn-kn)vn

 Since the right side is a linear combination of vectors in S, 
the linear independent of S implies that 

c1 – k1 = 0, c2 – k2 = 0, …, cn – kn = 0
 That is c1=k1, c2=k2, …, cn=kn.
 Thus, the two expressions for v are the same. 
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Coordinates Relative to a Basis

 If S = {v1, v2, …, vn} is a basis for a vector space V, and
v = c1v1 + c2v2 + ··· + cnvn

is the expression for a vector v in terms of the basis S, then the scalars c1, 
c2, …, cn, are called the coordinates (座標) of v relative to the basis S. 

 The vector (c1, c2, …, cn) in Rn constructed from these coordinates is called 
the coordinate vector of v relative to S (v對於基底S的座標向量); it is 
denoted by

(v)S = (c1, c2, …, cn)

 Remark: 
 Coordinate vectors depend not only on the basis S but also on the order 

in which the basis vectors are written.
 A change in the order of the basis vectors results in a corresponding 

change of order for the entries in the coordinate vector.
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Example (Standard Basis for R3)

 Suppose that i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1), then S = {i, 
j, k} is a linearly independent set in R3. 

 This set also spans R3 since any vector v = (a, b, c) in R3 can be 
written as 

v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai + bj + ck
 Thus, S is a basis for R3; it is called the standard basis for R3.

 Looking at the coefficients of i, j, and k, it 
follows that the coordinates of v relative to 
the standard basis are a, b, and c, so

(v)S = (a, b, c)
 Comparing this result to v = (a, b, c), we have

v = (v)S
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Example (Representing a Vector Using 
Two Bases)
 Let S = {v1, v2, v3} be the basis for R3 in the preceding example.

 Find the coordinate vector of v = (5, -1, 9) with respect to S.
 Find the vector v in R3 whose coordinate vector with respect to the basis 

S is (v)s = (-1, 3, 2).

 Solution (a)
 We must find scalars c1, c2, c3 such that v = c1v1 + c2v2 + c3v3, or, in 

terms of components, (5, -1, 9) = c1(1, 2, 1) + c2(2, 9, 0) + c3(3, 3, 4)
 Solving this, we obtaining c1 = 1, c2 = -1, c3 = 2. 
 Therefore, (v)s = (1, -1, 2).

 Solution (b)
 Using the definition of the coordinate vector (v)s, we obtain 

v = (-1)v1 + 3v2 + 2v3 = (11, 31, 7).

v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4)
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Standard Basis for Pn

 S = {1, x, x2, …, xn} is a basis for the vector space Pn
of polynomials of the form a0 + a1x + … + anxn. The 
set S is called the standard basis for Pn.
Find the coordinate vector of the polynomial p = a0 + 
a1x + a2x2 relative to the basis S = {1, x, x2} for P2 .

 Solution:
 The coordinates of p = a0 + a1x + a2x2 are the scalar 

coefficients of the basis vectors 1, x, and x2, so 
(p)s=(a0, a1, a2).
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Standard Basis for Mmn

 Let

 The set S = {M1, M2, M3, M4} is a basis for the vector space M22 of 2×2 
matrices. 

 To see that S spans M22, note that an arbitrary vector (matrix)              can 
be written as 

 To see that S is linearly independent, assume aM1 + bM2 + cM3 + dM4 = 0. It 
follows that                          . Thus, a = b = c = d = 0, so S is lin. indep.

 The basis S is called the standard basis for M22. 
 More generally, the standard basis for Mmn consists of the mn

different matrices with a single 1 and zeros for the remaining 
entries.

1 2 3 4

1 0 0 1 0 0 0 0
, , ,

0 0 0 0 1 0 0 1
M M M M
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4.5
Dimension
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Finite-Dimensional

 Definition
 A nonzero vector space V is called finite-dimensional (有限維的) 

if it contains a finite set of vector {v1, v2, …,vn} that forms a 
basis. If no such set exists, V is called infinite-dimensional (無限
維的). In addition, we shall regard the zero vector space to be 
finite-dimensional.

 Example
 The vector space Rn is finite-dimensional.
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Theorems

 Theorem 4.5.1
 All bases for a finite-dimensional vector space have the same 

number of vectors. 

 Theorem 4.5.2
 Let V be a finite-dimensional vector space and {v1, v2, …,vn} any 

basis.
 If a set has more than n vector, then it is linearly dependent.
 If a set has fewer than n vector, then it does not span V.



Proof of Theorem 4.5.2(a)

 Let S’={w1,w2,…,wm} be any set of m vectors in V, where 
m > n. Since S={v1,v2,…,vn} is a basis, each wi can be 
expressed as a linear combination of the vectors in S, say

 To show that S’ is linearly dependent, we must find 
scalars k1, k2, …, km, not all zero, such that 
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If a set has more than n vector, then it is linearly dependent.



Proof of Theorem 4.5.2(a)

 Using the previous results, we can rewrite

 Thus, from the linear independence of S, the problem of 
proving that S’ is a linearly dependent set reduces to 
showing there are scalars k1,k2,…,km, not all zero, that 
satisfy
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If a set has more than n vector, then it is linearly dependent.



Proof of Theorem 4.5.2(a)

 It has more unknowns than equations (m > n), so the 
proof is complete since Theorem 1.2.2 guarantees the 
existence of nontrivial solutions. 
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If a set has more than n vector, then it is linearly dependent.



Proof of Theorem 4.5.2(b)

 Let S’={w1,w2,…,wm} be any set of m vectors in V, where 
m < n. The proof will be by contradiction: We will show 
that assuming S’ span V leads to a contradiction of the 
linear independence of {v1,v2,…,vn}. 

 If S’ spans V, then every vector in V is a linear 
combination of the vectors in S’. In particular, each basis 
vectors vi is a linear combination of the vectors in S’, say
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If a set has fewer than n vector, then it does not span V.



Proof of Theorem 4.5.2(b)

 To obtain our contradiction, we will show that there are 
scalars k1,k2,…,kn, not all zero, such that 

 Thus the computation now yield

 This linear system has more unknowns than equations (m
< n) and hence has nontrivial solution by Theorem 1.2.2. 
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Dimension 

 Definition
 The dimension (維度) of a finite-dimensional vector space V, 

denoted by dim(V), is defined to be the number of vectors in a 
basis for V. 

 We define the zero vector space to have dimension zero.

 Dimensions of Some Vector Spaces:
 dim(Rn) = n [The standard basis has n vectors]
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Example 

 Determine a basis and the dimension 
of the solution space of the 
homogeneous system

2x1 + 2x2 – x3 + x5 = 0
-x1 + x2 + 2x3 – 3x4 + x5 = 0
x1 + x2 – 2x3      – x5 = 0

x3+   x4 + x5 = 0

 Solution:
 The general solution of the given 

system is 
x1 = -s-t,  x2 = s, 

x3 = -t,  x4 = 0,  x5 = t
 Therefore, the solution vectors can be 

written as

 Which shows that the vectors

span the solution space. 
 Since they are also linearly 

independent, {v1, v2} is a basis , 
and the solution space is two-
dimensional.
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Theorem 4.5.3 

 Theorem 4.5.3 (Plus/Minus Theorem)
 Let S be a nonempty set of vectors in a vector space

V.
 If S is a linearly independent set, and if v is a vector in V

that is outside of span(S), then the set S  {v} that results 
by inserting v into S is still linearly independent.

 If v is a vector in S that is expressible as a linear 
combination of other vectors in S, and if S – {v} denotes 
the set obtained by removing v from S, then S and S –
{v} span the same space; that is, span(S) = span(S – {v})



Examples
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None of the three vectors 
lies in the same plane as 
the other two.

Any of the vectors can be 
removed, and the 
remaining two will still 
span the plane. 

Either of the collinear 
vectors can be removed, 
and the remaining two will 
still span the plane. 



Theorem 4.5.4

 Theorem 4.5.4
 If V is an n-dimensional vector space, and if S is a 

set in V with exactly n vectors, then S is a basis for 
V if either S spans V or S is linearly independent.
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Proof of Theorem 4.5.4

 Assume that S has exactly n vectors and spans V. To 
prove that S is a basis, we must show that S is a linearly 
independent set. But if this is not so, then some vector v
in S is a linear combination of the remaining vectors. 

 If we remove this vector from S, then it follows from the 
Plus/Minus Theorem that the remaining set of n-1 vectors 
still spans V. But this is impossible, since it follows from 
Theorem 4.5.2b that no set with fewer than n vectors can 
span an n-dimensional vector space. Thus S is linearly 
independent. 
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Proof of Theorem 4.5.4

 Assume that S has exactly n vectors and is a linearly 
independent set. To prove that S is a basis, we must show 
that S spans V. 

 But if this is not so, then there is some vector v in V that 
is not in span(S). If we insert this vector into S, then it 
follows from the Plus/Minus Theorem that this set of n+1 
vectors is still linearly independent. 

 But this is impossible, since it follows from Theorem 
4.5.2a that no set with more than n vectors in an n-
dimensional vector space can be linearly independent. 
Thus S spans V. 
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Example 

 Show that v1 = (-3, 7) and v2 = (5, 5) form a basis for R2 by inspection.
 Solution:

 Neither vector is a scalar multiple of the other
 The two vectors form a linear independent set in the 2-D space R2

 The two vectors form a basis by Theorem 4.5.4.

 Show that v1 = (2, 0, 1) , v2 = (4, 0, 7), v3 = (-1, 1, 4) form a basis for R3 by 
inspection.

 Solution:
 The vectors v1 and v2 form a linearly independent set in the xz-plane.
 The vector v3 is outside of the xz-plane, so the set {v1, v2 , v3} is also 

linearly independent. 
 Since R3 is three-dimensional, Theorem 4.5.4 implies that {v1, v2 , v3} is 

a basis for R3.
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Theorem 4.5.5 

 Theorem 4.5.5
 Let S be a finite set of vectors in a finite-dimensional vector 

space V.
 If S spans V but is not a basis for V, then S can be 

reduced to a basis for V by removing appropriate vectors 
from S.

 If S is a linearly independent set that is not already a 
basis for V, then S can be enlarged to a basis for V by 
inserting appropriate vectors into S.



Proof of Theorem 4.5.5(a)

 If S is a set of vectors that spans V but is not a basis for V, then 
S is a linearly dependent set. Thus some vector v in S is 
expressible as a linear combination of the other vectors in S. 

 By the Plus/Minus Theorem, we can remove v from S, and the 
resulting set S’ will still span V. If S’ is linearly independent, 
then S’ is a basis for V, and we are done. 

 If S’ is linearly dependent, then we can remove some 
appropriate vector from S’ to produce a set S’’ that still spans 
V. 

 We can continue removing vectors until we finally arrive at a 
set of vectors in S that is linearly independent and spans V. 
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Proof of Theorem 4.5.5(b)

 Suppose that dim(V)=n. If S is a linearly independent set that is 
not already a basis for V, then S fails to span V, and there is 
some vector v in V that is not is span(S).

 By the Plus/Minus Theorem, we can insert v into S, and the 
resulting set S’ will still be linearly independent. If S’ spans V, 
then S’ is a basis for V, and we are done. 

 If S’ does not span V, then we can insert an appropriate vector 
into S’ to produce a set S’’ that is still linearly independent. 

 We can continue inserting vectors until we reach a set with n
linearly independent vectors in V. This set will be a basis for 
V. 
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Theorem 4.5.6

 Theorem 4.5.6
 If W is a subspace of a finite-dimensional vector space V, 

then W is finite-dimensional and dim(W)  dim(V).
 If dim(W) = dim(V), then W = V.
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Proof of Theorem 4.5.6

 Since V is finite-dimensional, so is W. Accordingly, 
suppose that S={w1,w2,…,wm} is a basis for W. Either S is 
also a basis for V or it is not. 

 If it is, then dim(W)=dim(V)=m. If it is not, then by 
Theorem 4.5.5b, vectors can be added to the linearly 
independent set S to make it into a basis for V, so 
dim(W)<dim(V). Thus dim(W) ≦ dim(V) in all cases. 

 If dim(W)=dim(V), then S is a set of m linearly 
independent vectors in the m-dimensional vector space V; 
hence S is a basis for V by Theorem 4.5.5. This implies 
that W = V. 
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4.6
Change of Basis
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Coordinate Maps

 If S = {v1, v2, …, vn} is a basis for a vector space V, then each vector 
v in V can be expressed uniquely as a linear combination of the basis 
vectors, say

v = k1v1 + k2v2 + … + knvn
 The scalars k1, k2, …, kn are the coordinates of v relative to S, and 

the vector 
(v)S = (k1, k2, …, kn)

is the coordinate vector of v relative to S. 
 Thus, we define

to be the coordinate vector of v relative to S.

 
1

2

:S

n

k
k

k

 
 
 
 
 
  

v
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Change of Basis (基底變換)

 Change of basis problem
 If we change the basis for a vector space V from some old 

basis B to some new basis B, how is the old coordinate 
matrix [v]B of a vector v related to the new coordinate 
matrix [v]B’?

 For simplicity, we show the example in 2-
dimensional spaces. Let B={u1,u2} and B’={u1’,u2’}. 
We will need the coordinate vectors for the new basis 
vectors relative to the old basis. Suppose they are 



Change of Basis

 That is, 

 Now let v be any vector in V, and let                    be the 
new coordinate vector, so that 
v=k1u1’+k2u2’

 In order to find the old coordinates of v, we must express 
v in terms of the old basis B. This yields
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Change of Basis

 Thus the old coordinate vector for v is 

which can be written as

 This equation states that the old coordinate vector results when 
we multiply the new coordinate on the left by the matrix 

The columns are the coordinates of the new basis
vectors relative to the old basis. 
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Solution of the Change of Basis 
Problem
 Solution of the change of basis problem

 If we change the basis for a vector space V from some old 
basis B = {u1, u2, …, un} to some new basis B = {u1, u2, 
…, un}, then the old coordinate matrix [v]B of a vector v is 
related to the new coordinate matrix [v]B’ of the same vector 
v by the equation

[v]B = P [v]B’
where the column of P are the coordinate matrices of the 
new basis vectors relative to the old basis; that is, the 
column vectors of P are

[u1]B, [u2]B, …, [un]B
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Transition Matrices

 Transition Matrices
 The matrix P is called the transition matrix (轉移矩陣)

from B to B; it can be expressed in terms of its column 
vector as

P = [[u1]B | [u2]B | … | [un]B]
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Example (Finding a Transition Matrix)

 Consider bases B = {u1, u2} and B = {u1’, u2’} for R2, where 
u1 = (1, 0), u2 = (0, 1);
u1’ = (1, 1), u2’ = (2, 1). 

Find the transition matrix from B to B.
Find [v]B if [v]B’ = [-3 5]T.

 Solution:
 First we must find the coordinate matrices for the new basis vectors u1’

and u2’ relative to the old basis B. 
 By inspection u1 = u1 + u2 so that

 Thus, the transition matrix from B to B is 

   1 2

1 2
'  and '

1 1B B

   
    
   

u u
1 2
1 1

P
 

  
 



Example (Finding a Transition Matrix)

 Using the transition matrix yields

 As a check, we should be able to recover the vector v
either from [v]B or [v]B’. 

 -3u1’ + 5u2’ = 7u1 + 2u2 = v = (7,2)
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Example (A Different Viewpoint)

u1 = (1, 0), u2 = (0, 1); u1’ = (1, 1), u2’ = (2, 1)
 In the previous example, we found the transition matrix from 

the basis B’ to the basis B. However, we can just as well ask 
for the transition matrix from B to B’. 

 We simply change our point of view and regard B’ as the old 
basis and B as the new basis. 

 As usual, the columns of the transition matrix will be the 
coordinates of the new basis vectors relative to the old basis. 

u1 = -u1’ + u2’; u2 = 2u1’ – u2’ 
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Remarks

 If we multiply the transition matrix from B’ to B and the 
transition matrix from B to B’, we find
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Theorems 

 Theorem 4.6.1
 If P is the transition matrix from a basis B to a basis B for a finite-

dimensional vector space V, then:
 P is invertible.
 P-1 is the transition matrix from B to B.

 Remark
 If P is the transition matrix from a basis B to a basis B, then for every v

the following relationships hold:
[v]B = P [v]B’
[v]B’ = P-1 [v]B 



Computing Transition Matrices

 A procedure for computing 
 Step 1. Form the matrix [B’|B]
 Step 2. Use elementary row operations to reduce the 

matrix in Step 1 to reduced row echelon form
 Step 3. The resulting matrix will be [            ]
 Step 4. Extract the matrix          from the right side of the 

matrix in Step 3. 
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Example

 Consider bases B = {u1, u2} and B = {u1’, u2’} for R2, where 
u1 = (1, 0), u2 = (0, 1);
u1’ = (1, 1), u2’ = (2, 1). 

 Find transition matrix from B’ to B

 Find transition matrix from B to B’
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Theorem 4.6.2

 Let B’={u1,u2,…,un} be any basis for the vector space Rn

and let S={e1,e2,…,en} be the standard basis for Rn. If the 
vectors in these bases are written in column form, then 

 If A=[u1|u2|…|un] is any           invertible matrix, then A
can be viewed as the transition matrix from the basis 
{u1,u2,…,un} for Rn to the standard basis for Rn. 
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