
Simulation

Berlin ChenBerlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
1. W. Navidi. Statistics for Engineering and Scientists. Section 4.11 & Teaching Material



Simulation

• Simulation refers to the process of generating random 
numbers and treating them as if they were datanumbers and treating them as if they were data 
generated by an actual scientific distribution
– The data so generated are called simulated or synthetic dataThe data so generated are called simulated or synthetic data 

(i.e., computer-generated numbers)

• E g the sexes of fraternal twins• E.g., the sexes of fraternal twins
– Assume each twin is equally likely to be a boy or a girl and the 

sexes of twins are determined independently
– What’s the probability that both twins are boys? (Assume we 

don’t know the multiplication rule                                                    )
Answer

      25.05.05.0, 2121  BTPBTPBTBTP

Answer
– Estimate the probability that two fair coins both lands heads

• Head → Boy; Tail → Girl  (a kind of Bernoulli trail)
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y; ( )
• Compute the portion of tosses in which both coins landed 

heads



Using Simulation to Estimate a Probability (1/3)g y ( )
• Given that two resistors X and Y labeled with 100 Ω and 

25 Ω are connected in parallel and the actual resistances25 Ω are connected in parallel, and the actual resistances 
of X and Y may differ from the labeled values, X~N(100, 
102) and Y~N(25, 2.52)
– What is the probability that the total resistances of the assembly 

R=XY/(X+Y) is in the range of 19<R<21 ?
X   Y

Answer
– First take a sample of N resistors labeled 100 Ω whose actual 

resistances are X X Xresistances are X1, X2 ,…, XN
– Then independently take a equal size sample of resistors 

labeled25 Ω whose actual resistances are Y1, Y2 ,…, YN
C N bl i h i R X Y /(X Y )– Construct N assembles with resistances R1=X1Y1/(X1+Y1),
R2=X2Y2/(X2+Y2),…., RN=XNYN/(XN+YN), where the values R1, 
R2,.., RN can be viewed as a random sample from the population of 
ll ibl l f th t t l i t
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all possible values of the total resistance 
– Compute the portion of R1, R2,.., RN falling between 19 and 21



Using Simulation to Estimate a Probability (2/3)g y ( )

– 48 values out of the sample of 100 are determined to fall in the 
range between 19 and 21  (P(19<R<21) ~ 0.48)
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Using Simulation to Estimate a Probability (3/3)g y ( )

• Simulation using MATLABg

a = 100+10.*randn(100,1);
b = 25+2.5.*randn(100,1);
c = (a *b) /(a+b);c = (a. b)./(a+b);
d = find(c>19 & c<21);
disp(size(d,1)/size(c,1));p( ( ) ( ))
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Example 4.70 (1/2)( )
• An engineer has to choose between two types of cooling 

fans to install in a computer The lifetimes in months offans to install in a computer.  The lifetimes, in months, of 
fans of type A are exponentially distributed with mean 50 
months, and the lifetime of fans of type B are , yp
exponentially distributed with mean 30 months.
– Since type A fans are more expensive, the engineer decides that 

h ill h t A f if th b bilit th t t A f illshe will choose type A fans if the probability that a type A fan will 
last more than twice as long as a type B fan is greater than 0.5 
( P(A>2B) >0.5 ? ).  Estimate this probability.

Answer:
• Among the 1000 simulated pairs, there 

are 460 for which A*>2B*.
Therefore, the estimated probability 
P(A>2B) =0 46
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P(A>2B) =0.46



Example 4.70 (2/2)( )

• However, the exact probability P(A>2B)  is 5/11=0.4545 , p y ( )
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Estimating Means and Variancesg

• Example 4.71: Use the simulated values      in Table 4.2 *
iRp

to estimate the mean      and standard deviation       of 
the total resistance 

i
R R

R
***– The values                         can be treated as if they were a 

random sample of actual total resistances
– Estimate with sample mean and with the sample

*
100

*
2

*
1 ,,, RRR 

R R*REstimate       with sample mean      and        with the sample 
standard deviation 

R RR
*Rs

1 6926d i i )d d( l
19.856mean) (sample * R R

1.6926deviation)standard(sample*  RR sσ
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Comparison with Propagation of Error (1/3)g ( )

• Recall that the method of propagation of error (c.f. p p g (
Section 3.4) can also be used to approximate the mean 
and variance of a function of random variables, 

h  such as
– It has to require that the standard deviations of       be small due 

to the Taylor series approximation

 nXXUU ,,1 

iX
to the Taylor series approximation

– It doesn’t need to know the distributions of         and also can 
pinpoint which of the       contributes most to the uncertainty in  

iX
iX U

• However, simulation can do things that propagation of 
error cannot do, such as 

E ti t b bilit– Estimate probability 
– Determine whether a given function of random variables is 

normally distributed
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y
– It has not to require that the standard deviations of       be smalliX



Comparison with Propagation of Error (2/3)g ( )

• Use the method of propagation of error to estimate the p p g
mean      and standard deviation       of the total 
resistance    (                                    ) in Example 4.71

R R
  )/(, YXXYYXUR R

– For    and     have small standard deviations (are close to their 
means      and       , respectively), we have the following (first-
order) Taylor series approximation
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Comparison with Propagation of Error (3/3)g ( )

  64.004.02564.010004.020,  YXYXU

   202564.010004.0,
64.004.0              




YXU
YX

E

      
5264010040

var64.0var04.0,var
2222

22



 YXYXU

  1 6492
2.72                      

5.264.01004.0                    






YXU   1.6492, YXU

:thatRecall 2
2

2
2

2
2

UUU
  



 





 





 



t.independen are ,,,  if

:that Recall

21

21
21

n

X
n

XXU

XXX

XXX n



  



 





 





 



Statistics-Berlin Chen 11



Using Simulation to Determine Whether a 
Population is Approximately NormalPopulation is Approximately Normal

• Construct a histogram and a normal probability plot of g p y p
the simulated sample to see if the data approximately 
normal

• Example 4.72
– For the simulated sample of total resistance in Table 4.2 
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The distribution appears to be approximately normal !



Using Simulation in Reliability Analysis (1/3)g y y ( )

• A system is made up of components, each of which has y p p ,
a lifetime that is random (The lifetime of the system is 
hence also random). Reliability engineers want to 
d t i th lif ti b bilit di t ib ti f thdetermine the lifetime probability distribution of the 
system given that the lifetime probability distributions of 
the components are approximately knownthe components are approximately known
– It can be very difficult to calculate the distribution of the system 

lifetime directly from the distribution of the component lifetimes
– If the lifetimes of the components are independent, it can often 

be done easily with simulation
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Using Simulation in Reliability Analysis (2/3)g y y ( )

• Example 4.74: A system consists of components     and  
connected in parallel

A B
connected in parallel
– The lifetime in month of      is distributed

Exp(1), while that of     is Exp(0.5)
A

Bp( ) p( )

– The system will fail if both      and      failA B
– Estimate the mean lifetime of the system (in months), the 

probability that the system functions for less than 1 month, and 
the 10th percentile of the system lifetimey

2 29elyapproximatissystemtheoflifetimemeanThe
data simulated 1000 of smaple aon  Based



0.516 is system  theof percentile10th  The      
0.278 ismonth  a within falls system y that theprobabilit The      

2.29ely approximatissystemtheof lifetimemean The 
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Using Simulation in Reliability Analysis (3/3)g y y ( )

• Calculate the system lifetime distribution using the y g
“Derived Distributions” method
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Using Simulation to Estimate Biasg

• The sample standard deviation     of a random sp
sample                   is used to estimate the population 
standard deviation

nXX ,,1 


– We know that      is a biased estimate
– Can we use simulation to estimate the bias in    ?  

Example 4 82

s
s

• Example 4.82 
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(Parametric) Bootstrap Methods (1/2)
• (Parametric) Bootstrap Methods: simulation methods in 

which the distribution to be sampled from is determined p
from the data (the distribution parameters are unknown in 
advance)

• Example 4.833
– A sample, 5.23, 1.93, 5.66, 3.28, 5.93 and 6.21, is taken from a 

normal distrib tion hose mean and ariance are nkno nnormal distribution whose mean and variance are unknown
– The sample mean                    and the sample standard deviation 

.  Estimate the bias in       .
7067.4X

7137.1s s

  lyrespective71371deviationstandard

 and mean  population  theestimate  to7137.1    
deviation  standard sample and 7067.4mean  sample  the  Use1.
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by  estimatedely approximat  
isin biasthethe1.6188),(mean sample theCalculate3.

**
s*   s

s



(Parametric) Bootstrap Methods (2/2)( ) ( )

• Bootstrap results can sometimes be used to adjust p j
estimates to make them more accurate

• Example 4.84: in Example 4.83, a sample of size 6 was 
 taken from an            population. The sample standard 

deviation              is an estimate of the unknown 
population standard deviation

 2,N
7137.1s

population standard deviation        . 
– Use the bootstrap result in Example 4.76 to reduce the bias in 

this estimate



Answer
– The bias in    is -0.049, which means that on average, the sample 

 
s

standard deviation computed from the                population is less 
than the true standard deviation      by about -0.0949

– We hence can adjust for the bias by adding 0 0949 to the

 2,N

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We hence can adjust for the bias by adding 0.0949 to the 
estimate to have bias-corrected estimate 81.10949.07137.1 s



Nonparametric Bootstrap

• If we have a sample                 from an unknown nXX ,,1 p
distribution, we will simulate samples                   as 
follows:

n1
**

1 ,, nii XX 

1. Image placing the values                in a box, and drawing out one 
value at random. Then replace the value and draw again. 
Continue until     draws have been made to form the first 

nXX ,,1 

n
bootstrap sample 

• It will probably contains some of the original sample items 
more than once and others not at all

*
1

*
11 ,, nXX 

more than once, and others not at all
2. Draw more bootstrap samples !
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