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Simulation

« Simulation refers to the process of generating random
numbers and treating them as if they were data
generated by an actual scientific distribution

— The data so generated are called simulated or synthetic data
(i.e., computer-generated numbers)

* E.g., the sexes of fraternal twins

— Assume each twin is equally likely to be a boy or a girl and the
sexes of twins are determined independently

— What's the probability that both twins are boys? (Assume we
don’t know the multiplication rule Pz = 8,7, = B)= P(7; = B)P(T, = B)=0.5-0.5=0.25 )

Answer
— Estimate the probability that two fair coins both lands heads
* Head — Boy; Tail — Girl (a kind of Bernoulli trail)

« Compute the portion of tosses in which both coins landed
heads
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Using Simulation to Estimate a Probability (1/3)

« Given that two resistors X and Y labeled with 100 Q and
25 () are connected in parallel, and the actual resistances
of X and Y may differ from the labeled values, X~N(100,
102) and Y~N(25, 2.5%)

— What is the probability that the total resistances of the assembly

R=XY/(X+Y) is in the range of 19<R<21 ?
:%E%y
Answer

First take a sample of N resistors labeled 100 Q whose actual
resistances are X, X,,..., Xy

Then independently take a equal size sample of resistors
labeled25 QO whose actual resistances are Yy, Y,,..., Yy

Construct N assembles with resistances R,=X,Y,/(X;+Y;),

R=X,Y (X5 Y5),. ..., Ry=XN YA (Xt Yy), where the values R,
R,,.., Ry can be viewed as a random sample from the population of
all possible values of the total resistance

Compute the portion of R,, R,,.., Ry falling between 19 and 21
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Using Simulation to Estimate a Probability (2/3)

— 48 values out of the sample of 100 are determined to fall in the
range between 19 and 21 (P(19<R<21) ~ 0.48)

TABLE 4.2 Simulated data for resistances in a parallel circuit

X* Y* R* X:n Y* R* X* Y* R* X* Y* R*
1 102.63 24.30 19.65 26 115.94 24.93 20.52 51 94.20 23.68 18.92 76 113.32 22.54 18.80
2 96.83 21.42 17.54 2 100.65 28.36 2213 52 82.62 27.82 20.81 7id 90.82 23.79 18.85
) 96.46 26.34 20.69 28 89.71 23.00 18.31 53 119.49 22.88 19.20 78 102.88 25:90 20.75
- 88.39 2210 17.68 29 104.93 24.10 19.60 54 99.43 28.03 21.87 79 9359 23.04 18.49
5 113.07 2917 23.19 30 93.74 23.68 18.91 55 108.03 21.69 18.06 80 89.19 27.05 20.76
6 117.66 27.09 22.02 ol 104.20 24.02 19:52 56 95.32 20.60 16.94 81 95.04 2376 19.01
bl 108.04 18.20 1558 32 123.43 26.66 21,93 57 80.70 30.36 22.06 82 109572 30.25 23.74
8 10113 28.30 2215 33 101.38 22.19 18.21 58 91.13 20.38 16.66 83 107.35 27.01 21.58
9 105.43 2351 1522 34 88.52 26.85 20.60 59 111.35 27.09 2179 84 89.59 18.55 15.37
10 103.41 24.64 19.90 35 101.23 26.88 21.24 60 118.75 23.92 19.91 85 101:72 24.65 19.84
11 104.89 22.59 18.58 36 86.96 25.66 19.81 61 103.33 23.99 19.47 86 101.24 2592 20.64
12 9491 27.86 21.54 37 95.92 26.16 20559 62 107.77 18.08 15.48 87 109.67 26.61 21.41
13 9291 27.06 20.96 38 95.97 26.05 20.49 63 104.86 24.64 19:95 88 100.74 26.18 20.78
14 95.86 24.82 19.71 39 93.76 24.71 19.56 64 84.39 25:52 19.60 89 98.44 23.63 19.06
15 100.06 23.65 19.13 40 113:89 2299 18.99 65 94.26 25.61 20.14 90 101.05 28.81 22.42
16 90.34 2375 18.81 41 109.37 26.19 21.13 66 82.16 27.49 20.60 91 88.13 28.43 21.49
17 116.74 24.38 20.17 42 91.13 24.93 19.58 67 108.37 21.35 21.84 92 113.94 29.45 23.40
18 90.45 25:30 19.77 43 101.60 28.66 22.36 68 86.16 21.46 17.18 93 97.42 23.78 19.11
19 9158 23.05 18.65 4 102.69 2137 17.69 69 105.97 23.59 19.30 94 109.05 23.04 19.02
20 10119 23.60 19.14 45 108.50 25.34 20.54 70 92.69 23.88 18.99 95 100.65 26.63 21.06
21 101.77 31.42 24.01 46 80.86 27:55 20.55 7 97.48 2543 20.17 96 105.64 2157 17.91
22 100.53 24.93 19.98 47 85.80 24.80 19.24 72 110.45 20.70 17.44 97 78.82 2325 17.95
23 98.00 27.57 2152 48 105.96 23.20 19.03 3 89.92 27.25 20.90 98 112.31 2277 18.93
24 108.10 27.51 21.93 49 103.98 21.78 18.01 74 103.78 235.67 20.58 99 100.14 24.95 1997
25 91.07 23.38 18.60 50 97.97 23.13 18.71 75 5533 2585 20.16 100 88.78 25.87 20.03
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Using Simulation to Estimate a Probability (3/3)

« Simulation using MATLAB

a = 100+10."randn(100,1);
b =25+2.5.*randn(100,1);
c = (a.”b)./(a+b);

d = find(c>19 & c<21);
disp(size(d,1)/size(c,1));
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Example 4.70 (1/2)

* An engineer has to choose between two types of cooling
fans to install in a computer. The lifetimes, in months, of
fans of type A are exponentially distributed with mean 50
months, and the lifetime of fans of type B are
exponentially distributed with mean 30 months.

— Since type A fans are more expensive, the engineer decides that
she will choose type A fans if the probability that a type A fan will
last more than twice as long as a type B fan is greater than 0.5
( P(A>2B) >0.5 ? ). Estimate this probability.

TABLE 4.3 simulated data for Example 4.70 Answer:

A* B* A* > 2B* . .
T wssi o1 * Among the 1000 simulated pairs, there
; SZ:T!«') 15191 | are 460 for which A*>2B*.
- 5153 119.150 0
g (fij%;"f 139149 0 Therefore, the estimated probability
51126 9.877 1
G el thes saichs 8 P(A>2B) =0.46
10 62.278 13.289 1
lf)()é) 1797.:7()57 123873 O
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Example 4.70 (2/2)

* However, the exact probability P(A>2B) is 5/11=0.4545

1
fola)=21,e " (/1 :-j 0
A( ) A 17 %) FA(a)—{l i a.ZO
» 1 0, otherwise
fB(b)_ﬁ“Be_ ’ (/13 :%j
B
P(A>2B)= (72 £, 5(a,b)dadb A=2B
=y [.[beA da]f ( )db
[P 2 b( /lb)a,b -
Ay

(24, + Ag e PRt )bdb

2/1 + Az
A 1730
S 24,+45  (2/50)+(1/30)

=5/11
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Estimating Means and Variances

« Example 4.71: Use the simulated values R; in Table 4.2
to estimate the mean #z and standard deviation or of
the total resistance R

— The values Rf,Rz,...,Rfoo can be treated as if they were a
random sample of actual total resistances

— Estimate g with sample mean R* and o, with the sample

standard deviation S p*

Up = R (sample mean) =19.856
OR = S+ (sample standard deviation) =1.6926

Statistics-Berlin Chen 8



Comparison with Propagation of Error (1/3)

« Recall that the method of propagation of error (c.f.
Section 3.4) can also be used to approximate the mean
and variance of a function of random variables,
such as U =U(X, - X,)

— It has to require that the standard deviations of X; be small due
to the Taylor series approximation

— It doesn’t need to know the distributions of X; and also can
pinpoint which of the X; contributes most to the uncertainty in U

« However, simulation can do things that propagation of
error cannot do, such as

— Estimate probability

— Determine whether a given function of random variables is
normally distributed

— It has not to require that the standard deviations of X; be small
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Comparison with Propagation of Error (2/3)

Use the method of propagation of error to estimate the
mean #r and standard deviation o of the total
resistance R (R=U(X,Y)=XY /(X +Y) ) in Example 4.71

— For Xand Y have small standard deviations (are close to their
means #x and #y , respectively), we have the following (first-
order) Taylor series approximation

oU
_ X - —
5}(:—;1;( ]( /JX)"' { PY%

p oU N oU v .| oY
X= X~ X= Y X=
Vg oY |y—i” OX |y_, " oY

25100 +25)-100-25

ey =
ot (100 + 25)?

~100(100 +25) 100 - 25

_ =0.64
op (100 + 25)>
Statistics-Berlin Chen 10

o
oX

U(X,Y)—U(ﬂx,ﬂy)z[

U<X,Y>z[v<ﬂx,ﬂy>{§§§

X=uy Y
Y=py
*
100 *25 10
100 + 25

Uy, pty )=

au
oX

=0.04

oX (x+Y)

: J: AXY /(X +Y)) X(X+Y)-XY

Yoy oY (X+Y)

X=uy
Y=uy

} _oxv/(x+Y) Y(X+Y)-XY

au
oY




Comparison with Propagation of Error (3/3)

U(X,Y)~20-0.04-100—0.64-25+0.04.X +0.64Y
=0.04X +0.64Y
S E[U(X,Y)]=0.04-100 +0.64-25 =20
Var(U(X,Y)) = 0.04> Var(X)+ 0.647 Var(Y)
=0.04%-10% + 0.647% - 2.57
=2.72
L oy(x,y) =1.6492

. - L
Recall that: o, z\/(g)((]j 0)2(1 +(§)l(]j 0)2(2 ++[§)((]j G)z(n
1 2 n

if X,,X,,..., X, areindependent.
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Using Simulation to Determine Whether a
Population is Approximately Normal

« Construct a histogram and a normal probability plot of

the simulated sample to see if the data approximately
normal

« Example 4.72

— For the simulated sample of total resistance in Table 4.2

Mormal probability plot for simulated resistances

— | L] ¢
] i i i i i '} I 1
15 1a 17 18 19 20 21 22 23 24 25

The distribution appears to be approximately normal !
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Using Simulation in Reliability Analysis (1/3)

* A system is made up of components, each of which has
a lifetime that is random (The lifetime of the system is
hence also random). Reliability engineers want to
determine the lifetime probability distribution of the
system given that the lifetime probability distributions of
the components are approximately known

— It can be very difficult to calculate the distribution of the system
lifetime directly from the distribution of the component lifetimes

— If the lifetimes of the components are independent, it can often
be done easily with simulation

Statistics-Berlin Chen 13



Using Simulation in Reliability Analysis (2/3)

 Example 4.74: A system consists of components 4 and B

connected in parallel
— The lifetime in month of 4 is distributed

A

Exp(1), while that of B is Exp(0.5)

}

— The system will fail if both 4 and B fail

— Estimate the mean lifetime of the system (in months), the
probability that the system functions for less than 1 month, and
the 10th percentile of the system lifetime

TABLE 4.5 Simulated data for Example 4.74

At B* Lt

1 0.0245 0.5747 0.5747
2 0.3623 0.3998 0.3998
3 0.8858 1.7028 1.7028
4 0.1106 14.2252 14.2252
3 0.1903 0.4665 0.4665
6 2.2259 1.4138 2.2259
7 0.8881 0.9120 0.9120
8 3.3471 3.2134 3.3471
9 2.5475 1.3240 2.5475
10 0.3614 0.8383 0.8383
1000 0.3619 1.8799 1.8799

Estimated system life time L' =max (A* ,B *)

Based on a smaple of 1000 simulated data

— The mean lifetime of the system is approximately 2.29
The probability that the system falls within a month is 0.278

The 10th percentile of the systemis 0.516
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Using Simulation in Reliability Analysis (3/3)

« Calculate the system lifetime distribution using the
“Derived Distributions™ method

The expected lifetime of the system

Bl1= (717, 0
| | 1
+ —
Ay Ag Ay+2p

F,(1)=P(L<1)
:P(max(A,B)Sl) —

=P(4<1,B<I)

= P(4<1)P(B <) — ot
_ (1 ] e-zAzXI ] e-sz) 1 05 15
B =233

1 — el _ o Asl 4 o (Autag)

)= s g~ + 2
P(L<)=F,()=1-e? — ¢ 4 etatin)
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Using Simulation to Estimate Bias

« The sample standard deviation s of a random

sample Xi,...,X, Is used to estimate the population
standard deviation o

— We know that S is a biased estimate
— Can we use simulation to estimate the bias in S ?

 Example 4.82

TABLE 4.6 Simulated data for Example 4.75

X: X; X; X: X: X: = 1. s is the sample deviation of the simulated simple random sample

I —04326 07160 —0.6028 08304 —0.1342 —0.3560  0.6160 The biasin s  can be expressed by u « - o

3 RO S0RG 0008~ _0,0038 " 02873 18024 13206 t 7 s

3 01253 20647 11889 —04598 03694 04906  1.1190 ‘ . N

4 —17580  0.1575 08496 03291 —1.5780 —1.1100  0.8733 2. We can also veiw the values of sy ,...,s1099 @ random sample
5 16867 0378 03809 04870 09454  —0.4602 07111

6 (| 13686 | 07469235 21108 26734  —0.5311 L1611 1.6629 - . *

T o —B24BA 205719, ~19659  © 01269  ~02642 03721 10955 from the population of all possible values of s

§ . 13765 6—04187,0; 05014 ~ 19869 - —00532 « 07086 1.1228 ) _x )

9 —18045 05361 —09121 14059 —12156 —09619  1.2085 3. » can beestimated by s ,then y «-ois
10 03165 06007 —05363 —02300 02626 00523  0.4092 § s

; : : : : : : : approximately estimated by s - =0.9601—-1=-0.0399

R - 05204 OIS, . 02006, ~L1602. . 11020 {03173 07328

Xl*,...,Xl* is a simple random sample from N(O,l)
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TABLE 4.7 Simulated data for Example 4.76

advance)
- Example 4.833

(Parametric) Bootstrap Methods (1/2)

« (Parametric) Bootstrap Methods: simulation methods in
which the distribution to be sampled from is determined
from the data (the distribution parameters are unknown in

— A sample, 5.23, 1.93, 5.66, 3.28, 5.93 and 6.21, is taken from a
normal distribution whose mean and variance are unknown

— The sample mean X =4.7067 and the sample standard deviation
Estimate the biasin §

s =1.7137

0O\ A WD

1000

X; X; X; X X;

23995 48961  3.6221 69787 44311
26197 43102 32350 62619  4.4233
30114 52492 7.6990 60439 65965
81937578 11522071, il 1:0737 n¥ A543 41 Svi310304
58820 53084 46003 26439  2.3589
78915 39731 51229 51749 3.5255
42737 5518077 23314 151512, 57752
58602 53280 55860  6.8256  7.5063
57813 49364 25893 37633 0.9065
33690 18618 27627 32837  3.9863
20496 63385 62414 51580  3.7213

X

4.5367
3.5903
3.7505
3.8632
2.3055
3.3330
4.0205
3.9393
3.8372
6.0382

8.4576

s*
15157
1.2663
1.7652
1.1415
1.6054
1.6884
1.2705
1.2400
1.7260
1.4110

2.2364

1. Use the sample mean X = 4.7067 and sample standard deviation
s =1.7137 to estimate the population mean x and
standard deviation o ((7* = 1.7137), respectively
2. Generate a simulated random sample of s ..., 5,4 as those
done in Example 4.75
3. Calculate the sample mean 5~ (= 1.6188), the the bias in is
approximat ely estimated by

Ho-0 x5 -0 =1.6188-1.7137 = -0.0947
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(Parametric) Bootstrap Methods (2/2)

« Bootstrap results can sometimes be used to adjust
estimates to make them more accurate

 Example 4.84: in Example 4.83, a sample of size 6 was
taken from an ~{u.o)population. The sample standard
deviations=1.7137 is an estimate of the unknown
population standard deviation o

— Use the bootstrap result in Example 4.76 to reduce the bias in
this estimate

Answer

— The bias in s is -0.049, which means that on average, the sample
standard deviation computed from the N(y,az) population is less
than the true standard deviation o by about -0.0949

— We hence can adjust for the bias by adding 0.0949 to the
estimate to have bias-corrected estimate s'=1.7137 +0.0949 = 1.81
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Nonparametric Bootstrap

« |If we have a sample Xi,...,X, from an unknown
distribution, we will simulate samples X;,..., X ,,;
follows:

1. Image placing the values Xi,..., X, in a box, and drawing out one
value at random. Then replace the value and draw again.
Continue until » draws have been made to form the first
bootstrap sample xi,....,X,

« It will probably contains some of the original sample items

Mmore tnan UIIbU and ULIIUID Not

2. Draw more bootstrap samples !

as

nt Al
dl adl
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