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Introduction (1/3)

• Goal: discover significant patterns or features from the 
input data
– Salient feature selection or dimensionality reduction

– Compute an input-output mapping based on some desirable 
properties

Networkx y
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Introduction (2/3)

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)

• Latent Semantic Analysis (LSA)
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Bivariate Random Variables

• If the random variables X and Y have a certain joint 
distribution that describes a bivariate random variable
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Multivariate Random Variables

• If the random variables X1,X2,…,Xn have a certain joint 
distribution that describes a multivariate random variable
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Introduction (3/3)

• Formulation for feature extraction and dimension reduction
– Model-free (nonparametric)

• Without prior information: e.g., PCA 
• With prior information: e.g., LDA 

– Model-dependent (parametric), e.g.,
• HLDA with Gaussian cluster distributions
• PLSA with multinomial latent cluster distributions
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Principal Component Analysis (PCA) (1/2)

• Known as Karhunen-Loẻve Transform (1947, 1963)

– Or Hotelling Transform (1933)

• A standard technique commonly used for data reduction in 
statistical pattern recognition and signal processing

• A transform by which the data set can be represented by 
reduced number of effective features and still retain the 
most intrinsic information content
– A small set of features to be found to represent the data samples 

accurately

• Also called “Subspace Decomposition”, “Factor Analysis” ..

Pearson, 1901
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Principal Component Analysis (PCA) (2/2)

The patterns show 
a significant difference
from each other in one 
of the transformed axes



Statistics-9

PCA Derivations (1/13)

• Suppose x is an n-dimensional zero mean 
random vector,
– If x is not zero-mean, we can subtract the mean 

before processing the following analysis

– x can be represented without error by the summation 
of n linearly independent vectors
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PCA Derivations (2/13)

(2,3)

(0,1)

(1,0)
(1,1)(-1,1)

(5/2’,1/2’)

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡−
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
1
1

1
2
1

1
1   
1

2
1

1
1

2
5

1
0

3
0
1

2
3
2

orthogonal basis sets

Subspace Decomposition



Statistics-11

PCA Derivations (3/13)

– Further assume the column (basis) vectors of            
the matrix        form an orthonormal set

• Such that       is equal to the projection
of      on  
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PCA Derivations (4/13)

– Further assume the column (basis) vectors of the 
matrix       form an orthonormal set

• also has the following properties
– Its mean is zero, too

– Its variance is

• The correlation between two projections       and           
is
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PCA Derivations (5/13)

• Minimum Mean-Squared Error Criterion
– We want to choose only m of              that we still can 

approximate      well in mean-squared error criterionx
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PCA Derivations (6/13)

• Minimum Mean-Squared Error Criterion
– If the orthonormal (basis) set              is selected to be the 

eigenvectors of the correlation matrix       , associated with 
eigenvalues

• They will have the property that:  

– Such that the mean-squared error mentioned above will be
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PCA Derivations (7/13)

• Minimum Mean-Squared Error Criterion
– If the eigenvectors are retained associated with the m largest 

eigenvalues, the mean-squared error will be

– Any two projections      and        will be mutually uncorrelated

• Good news for most statistical modeling approaches
– Gaussians and diagonal matrices 

( ) ( )0...... where    1
1

≥≥≥≥≥∑=
+=

nm
n

mj
jeigen m λλλλε

iy jy

{ } ( )( ){ } { }
{ } 0             j ====

==

j
T
ij

T
ij

TT
i

j
TT

i
TT

j
T
iji

E

EEyyE

φφRφφφxxφ

φxxφxφxφ

λ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅

⋅⋅

nnnn

n

σσσ

σσ
σσσ

21

2222

11211

( )( )

{ } ∑==

−⎟
⎠
⎞

⎜
⎝
⎛

∑≈

−−=

=

i

T
ii

T

TN

i

T
ii

T

N
E

N

E

xxxxR

μμxx

μxμxΣ

1

1   

][

1



Statistics-16

PCA Derivations (8/13)

• A Two-dimensional Example of Principle Component 
Analysis 
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PCA Derivations (9/13)

• Minimum Mean-Squared Error Criterion
– It can be proved that                 is the optimal solution under the 

mean-squared error criterion 
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PCA Derivations (10/13)

• Given an input vector x with dimension m
– Try to construct a linear transform Φ’ (Φ’ is an nxm matrix m<n) 

such that the truncation result, Φ’Tx, is optimal in mean-
squared error criterion

Encoder
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PCA Derivations (11/13)

• Data compression in communication

– PCA is an optimal transform for signal representation and 
dimensional reduction, but not necessary for classification tasks, 
such as speech recognition

– PCA needs no prior information (e.g. class distributions of output 
information) of the sample patterns

? (To be discussed later on)
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PCA Derivations (12/13)

• Scree Graph
– The plot of variance as a function of the number of eigenvectors

kept
• Select      such that

• Or select those eigenvectors with eigenvalues larger than the 
average input variance (average eivgenvalue)
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PCA Derivations (13/13)

• PCA finds a linear transform W such that the sum of 
average between-class variation and average within-
class variation is maximal  
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PCA Examples: Data Analysis

• Example 1: principal components of some data points
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PCA Examples: Feature Transformation

• Example 2: feature transformation and selection

threshold for information content reserved

New feature dimensions

Correlation matrix 
for old feature 
dimensions
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PCA Examples: Image Coding (1/2)

• Example 3: Image Coding
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PCA Examples: Image Coding (2/2)

• Example 3: Image Coding (cont.)
(value reduction)(feature reduction)
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PCA Examples: Eigenface (1/4)

• Example 4: Eigenface in face recognition (Turk and Pentland, 1991)

– Consider an individual image to be a linear combination of a small 
number of face components or “eigenfaces” derived from a set of 
reference images 

– Steps
• Convert each of the L reference images into a vector of 

floating point numbers representing light intensity in each pixel
• Calculate the coverance/correlation matrix between these 

reference vectors  
• Apply Principal Component Analysis (PCA) find the 

eigenvectors of the matrix: the eigenfaces
• Besides, the vector obtained by averaging all images are 

called “eigenface 0”. The other eigenfaces from “eigenface 1”
onwards model the variations from this average face 
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PCA Examples: Eigenface (2/4)

• Example 4: Eigenface in face recognition (cont.) 
– Steps

• Then the faces are then represented as eigenvoice 0 plus a 
linear combination of the remain K (K ≤ L) eigenfaces

– The Eigenface approach persists the minimum mean-squared 
error criterion

– Incidentally, the eigenfaces are not only themselves usually 
plausible faces, but also directions of variations between faces
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PCA Examples: Eigenface (3/4)

The averaged face

Face images as the training set
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PCA Examples: Eigenface (4/4)

?

A projected face image
Seven eigenfaces derived from the training set

(Indicate directions of variations between faces )
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PCA Examples: Eigenvoice (1/3)

• Example 5: Eigenvoice in speaker adaptation (PSTL, 2000)

– Steps
• Concatenating the regarded parameters for each speaker r to 

form a huge vector a(r) (a supervectors)
• SD HMM model mean parameters (μ)

Eigenvoice Eigenvoice 
space space 

constructionconstruction

Speaker 1 Data

SI HMM

Speaker R Data

Model Training Model Training

Speaker 1 HMM Speaker R HMM

D = 
(M．n)×1 Principal Component

Analysis

Each new speaker S is representedEach new speaker S is represented
by a point by a point PP in in KK--spacespace

( ) ( ) ( ) ( )Kwww Kiiii eeeeP ,2,1, .....210 ++++=

SI HMM model
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PCA Examples: Eigenvoice (2/3)

• Example 4: Eigenvoice in speaker adaptation (cont.)
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PCA Examples: Eigenvoice (3/3)

• Example 5: Eigenvoice in speaker adaptation (cont.)
– Dimension 1 (eigenvoice 1):

• Correlate with pitch or sex
– Dimension 2 (eigenvoice 2):

• Correlate with amplitude
– Dimension 3 (eigenvoice 3):

• Correlate with second-formant
movement

Note that:
Eigenface performs on feature space
while eigenvoice performs 
on model space 
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Linear Discriminant Analysis (LDA) (1/2)

• Also called 
– Fisher’s Linear Discriminant Analysis, Fisher-Rao Linear 

Discriminant Analysis
• Fisher (1936): introduced it for two-class classification

• Rao (1965): extended it to handle multiple-class classification
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Linear Discriminant Analysis (LDA) (2/2)

• Given a set of sample vectors with labeled (class) 
information, try to find a linear transform W such that the 
ratio of average between-class variation over average 
within-class variation is maximal  

Within-class distributions are 
assumed here to be Gaussians
With equal variance in the 
two-dimensional sample space  
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LDA Derivations (1/4)

• Suppose there are N sample vectors         with 
dimensionality n, each of them is belongs to one of the J
classes
– The sample mean is:

– The class sample means are: 

– The class sample covariances are:

– The average within-class variation before transform

– The average between-class variation before transform
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LDA Derivations (2/4)

• If the transform                                    is applied
– The sample vectors will be

– The sample mean will be

– The class sample means will be

– The average within-class variation will be 
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LDA Derivations (3/4)

• If the transform                                  is applied
– Similarly, the average between-class variation will be

– Try to find optimal         such that the following objective function is 
maximized 

• A closed-form solution: the column vectors of an optimal matrix        
are the generalized eigenvectors corresponding to the 

largest eigenvalues in

• That is,               are the eigenvectors corresponding to the
largest eigenvalues of 
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LDA Derivations (4/4)

• Proof: 
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LDA Examples: Feature Transformation (1/2)

• Example1: Experiments on Speech Signal Processing

Covariance Matrix of the 18-Mel-filter-bank vectors

Calculated using Year-99’s 5471 files

Covariance Matrix of the 18-cepstral vectors

Calculated using Year-99’s 5471 files

After Cosine Transform
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LDA Examples: Feature Transformation (2/2)

Covariance Matrix of the 18-PCA-cepstral vectors Covariance Matrix of the 18-LDA-cepstral vectors

Calculated using Year-99’s 5471 filesCalculated using Year-99’s 5471 files

20.1123.11LDA-2 

20.1723.12LDA-1

22.7126.32MFCC

WGTC

Character Error Rate

• Example1: Experiments on Speech Signal Processing (cont.)

After PCA Transform After LDA Transform
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PCA vs. LDA (1/2)

PCA LDA
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Heteroscedastic Discriminant Analysis (HDA)

• HDA: Heteroscedastic Discriminant Analysis 
– The difference in the projections obtained from LDA and HDA for 

2-class case

• Clearly, the HDA provides a much lower classification 
error than LDA theoretically 
– However, most statistical modeling approaches assume data 

samples are Gaussian and have diagonal covariance matrices
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HW: Feature Transformation (1/4)

• Given two data sets (MaleData, Female Data) in which 
each row is a sample with 39 features, please perform 
the following operations:
1. Merge these two data sets and find/plot the covariance matrix for 

the merged data set.
2. Apply PCA and LDA transformations to the merged data set, 

respectively. Also, find/plot the covariance matrices for 
transformations, respectively. Describe the phenomena that you 
have observed. 

3. Use the first two principal components of PCA as well as the first 
two eigenvectors of LDA to represent the merged data set. 
Selectively plot portions of samples from MaleData and 
FemaleData, respectively. Describe the phenomena that you 
have observed. 

http://berlin.csie.ntnu.edu.tw/PastCourses/2004S-MachineLearningandDataMining/Homework/HW-1/MaleData.txt
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HW: Feature Transformation (2/4)
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HW: Feature Transformation (3/4)

• Plot Covariance Matrix

• Eigen Decomposition 

CoVar=[
3.0        0.5      0.4;
0.9        6.3      0.2;
0.4        0.4 4.2;                 

];
colormap('default');
surf(CoVar);

BE=[
3.0        3.5      1.4;
1.9        6.3      2.2;
2.4        0.4      4.2;                 

];

WI=[
4.0        4.1      2.1;
2.9        8.7      3.5;
4.4        3.2      4.3;                 

];

%LDA
IWI=inv(WI);
A=IWI*BE;
%PCA
A=BE+WI; % why ?? ( Prove it! )

[V,D]=eig(A);
[V,D]=eigs(A,3); 

fid=fopen('Basis','w');
for i=1:3 % feature vector length

for j=1:3  % basis number
fprintf(fid,'%10.10f ',V(i,j));

end
fprintf(fid,'\n');

end  
fclose(fid);
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HW: Feature Transformation (4/4)

• Examples
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2000筆原始資料經 PCA轉換後分布圖
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Latent Semantic Analysis (LSA) (1/7)

• Also called Latent Semantic Indexing (LSI), Latent 
Semantic Mapping (LSM)

• A technique originally proposed for Information Retrieval 
(IR), which projects queries and docs into a space with 
“latent” semantic dimensions
– Co-occurring terms are projected onto the

same dimensions

– In the latent semantic space (with fewer dimensions), a query 
and doc can have high cosine similarity even if they do not share 
any terms 

– Dimensions of the reduced space correspond to the axes of 
greatest variation 

• Closely related to Principal Component Analysis (PCA)
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LSA (2/7)

• Dimension Reduction and Feature Extraction
– PCA

– SVD (in LSA)

Xφ T
iiy =

Y

kn
X

kφ1φ

∑
=

k

i
iiy

1

φ

kφ1φ

n
X̂

rxr

Σ’

r ≤ min(m,n)
rxn

V’T
U’

mxrmxn mxn

kxkA A’

kgiven  afor   ˆmin
2

XX −

kF given  afor min 2AA −′

feature space

latent semantic
space

latent semantic
space

k

k

orthonormal basis 



Statistics-49

LSA (3/7)

– Singular Value Decomposition (SVD) used for the word-
document matrix

• A least-squares method for dimension reduction
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LSA (4/7)

• Frameworks to circumvent vocabulary mismatch

Doc

Query

terms

terms

doc expansion

query expansion

literal term matching

structure model

structure model

latent semantic
structure retrieval
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LSA (5/7)
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LSA (6/7)

Query: “human computer interaction”

An OOV word
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LSA (7/7)

• Singular Value Decomposition (SVD)
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LSA Derivations (1/7)

• Singular Value Decomposition (SVD)
– ATA is symmetric nxn matrix

• All eigenvalues λj are nonnegative real numbers

• All eigenvectors vj are orthonormal (    Rn)

• Define singular values:
– As the square roots of the eigenvalues of ATA
– As the lengths of the vectors Av1, Av2 , …., Avn
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LSA Derivations (2/7)

• {Av1, Av2 , …. , Avr } is an orthogonal basis of Col A

– Suppose that A (or ATA) has rank r ≤ n

– Define an orthonormal basis {u1, u2 ,…., ur} for Col A

• Extend to an orthonormal basis {u1, u2 ,…, um} of Rm

( ) 0====• j
T

ijj
TT

ij
T

iji vvAvAvAvAvAvAv λ

0....   ,0.... 2121 ====>≥≥≥ ++ nrrr λλλλλλ

[ ] [ ]rrr

iiii
i

i
i

i

vvvAuuu

AvuAvAv
Av

u

      ...     

11    

2121 =Σ⇒

=⇒== σ
σ

[ ] [ ]

T

TT
nrmr

VUA

AVVVUAVU

vvvvAuuuu

Σ=⇒

=Σ⇒=Σ⇒

=Σ⇒

    

      

... ... ... ...     2121

22
2

2
1

2 ... rF
A σσσ +++= ?

∑∑
= =

=
m

i

n

j
ijF
aA

1 1

22

V : an orthonormal matrix (nxr)

nxnI ?

Known in advance

( )

( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−×−×−

−×
×

rnrmrrm

rnrr
nm 00

0Σ
 Σ

    
     

       

u: also an 
orthonormal matrix

(mxr)



Statistics-56

LSA Derivations (3/7)
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LSA Derivations (4/7)

• Additional Explanations
– Each row of        is related to the projection of a corresponding 

row of        onto the basis formed by columns of 

• the i-th entry of  a row of        is related to the projection of a 
corresponding row of        onto the i-th column of 

– Each row of        is related to the projection of a corresponding 
row of        onto the basis formed by

• the i-th entry of  a row of        is related to the projection of a 
corresponding row of        onto the i-th column of 
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LSA Derivations (5/7)

• Fundamental comparisons based on SVD
– The original word-document matrix (A)

– The new word-document matrix (A’)
• compare two terms

→ dot product of two rows of U’Σ’
• compare two docs

→ dot product of two rows of V’Σ’
• compare a query word and a doc → each individual entry of A’

w1
w2

wm

d1 d2 dn

mxn

A

• compare two terms → dot product of two rows of A
– or an entry in AAT

• compare two docs → dot product of two columns of A
– or an entry in ATA

• compare a term and a doc → each individual entry of A

A’A’T=(U’Σ’V’T) (U’Σ’V’T)T=U’Σ’V’TV’Σ’TU’T =(U’Σ’)(U’Σ’)T

A’TA’=(U’Σ’V’T)T ’(U’Σ’V’T) =V’Σ’T’UT U’Σ’V’T=(V’Σ’)(V’Σ’)T
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LSA Derivations (6/7)

• Fold-in: find representations for pesudo-docs q
– For objects (new queries or docs) that did not appear in the 

original analysis
• Fold-in a new mx1 query (or doc) vector 

– Cosine measure between the query and doc vectors in 
the latent semantic space

( ) 1
11ˆ −

×××× Σ= kkkmm
T

k Uqq
Query represented by the weighted
sum of it constituent term vectors

The separate dimensions 
are differentially weighted

Just like a row of V
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ΣΣ

Σ
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dq
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row vectors
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LSA Derivations (7/7)

• Fold-in a new 1 X n term vector 
1

11ˆ
−
×××× Σ= kkknnk Vtt
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LSA Example

• Experimental results
– HMM is consistently better than VSM at all recall levels
– LSA is better than VSM at higher recall levels

Recall-Precision curve at 11 standard recall levels evaluated on
TDT-3 SD collection. (Using word-level indexing terms)  
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LSA: Conclusions

• Advantages
– A clean formal framework and a clearly defined optimization 

criterion (least-squares)
• Conceptual simplicity and clarity

– Handle synonymy problems (“heterogeneous vocabulary”)

– Good results for high-recall search
• Take term co-occurrence into account

• Disadvantages
– High computational complexity
– LSA offers only a partial solution to polysemy

• E.g. bank, bass,…
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LSA Toolkit: SVDLIBC (1/5)

• Doug Rohde's SVD C Library version 1.3 is based
on the SVDPACKC library

• Download it at http://tedlab.mit.edu/~dr/
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LSA Toolkit: SVDLIBC (2/5)

• Given a sparse term-doc matrix
– E.g., 4 terms and 3 docs

– Each entry is weighted by TFxIDF score

• Perform SVD to obtain corresponding term and doc 
vectors represented in the latent semantic space

• Evaluate the information retrieval capability of the LSA 
approach by using varying sizes (e.g., 100, 200, ..,600 
etc.) of LSA dimensionality

2.3   0.0   4.2 
0.0   1.3   2.2 
3.8   0.0   0.5 
0.0   0.0 0.0

Term

Doc
4    3    6 
2
0  2.3
2  3.8
1
1  1.3
3
0   4.2
1   2.2
2   0.5

Row
#Tem

Col.
# Doc

Nonzero 
entries

2 nonzero entries 
at Col 0

Col 0, Row 0 
Col 0, Row 2 

1 nonzero entry
at Col 1

Col 1, Row 1 
3 nonzero entry

at Col 2
Col 2, Row 0 
Col 2, Row 1 
Col 2, Row 2 
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LSA Toolkit: SVDLIBC (3/5)

• Example: term-docmatrix

• SVD command (IR_svd.bat)
svd -r st -o LSA100  -d 100  Term-Doc-Matrix

51253 2265 218852
77
508 7.725771
596 16.213399
612 13.080868
709 7.725771
713 7.725771
744 7.725771
1190 7.725771
1200 16.213399
1259 7.725771
……

Indexing 
Term no. Doc no. Nonzero 

entries

sparse matrix input prefix of output files
No. of reserved 

eigenvectors 
name of sparse 

matrix input

LSA100-Ut

LSA100-S

LSA100-Vt

output
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LSA Toolkit: SVDLIBC (4/5)

• LSA100-Ut

• LSA100-S

100  51253
0.003 0.001 ……..
0.002 0.002 …….

word vector (uT): 1x100

51253 words

100
2686.18
829.941
559.59
….

100 eigenvalues

• LSA100-Vt

100  2265
0.021 0.035 ……..
0.012 0.022 …….

doc vector (vT): 1x100

2265 docs
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LSA Toolkit: SVDLIBC (5/5)

• Fold-in a new mx1 query vector 

• Cosine measure between the query and doc vectors in 
the latent semantic space

( ) 1
11ˆ −

×××× Σ= kkkmm
T

k Uqq
Query represented by the weighted
sum of it constituent term vectors

The separate dimensions 
are differentially weighted

Just like a row of V
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