Clustering Techniques for
Information Retrieval

Berlin Chen

Department of Computer Science & Information Engineering
National Taiwan Normal University

References:

1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schitze, Introduction to Information Retrieval, Cambridge
University Press, 2008. (Chapters 16 & 17)

2. Modern Information Retrieval, Chapters 5 & 7

3. "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden
Markov Models," Jeff A. Bilmes, U.C. Berkeley TR-97-021



Clustering

* Place similar objects in the same group and
assign dissimilar objects to different groups (typlcally
using a distance measure, such as Euclidean distance)

— Word clustering

» Neighbor overlap: words occur with the similar left and right
neighbors (such as in and on)

— Document clustering

« Documents with the similar topics or concepts are put
together

* Nevertheless, clustering cannot give a comprehensive
description of the object

— How to label objects shown on the visual display is a difficult
problem
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Clustering vs. Classification

» Classification is supervised and requires a set of labeled
training instances for each group (class)
— Learning with a teacher

» Clustering is unsupervised and learns without a teacher
to provide the labeling information of the training data set

— Also called automatic or unsupervised classification
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Types of Clustering Algorithms

« Two types of structures produced by clustering
algorithms
— Flat or non-hierarchical clustering
— Hierarchical clustering

* Flat clustering

— Simply consisting of a certain number of clusters and the relation
between clusters is often undetermined

— Measurement: construction error minimization or probabilistic
optimization
* Hierarchical clustering

— A hierarchy with usual interpretation that each node stands for a
sub-cluster of its mother’s node

* The leaves of the tree are the single objects
« Each node represents the cluster that contains all the objects
of its descendants
— Measurement: similarities of instances @
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Hard Assignment vs. Soft Assignment (1/2)

« Another important distinction between clustering

algorithms is whether they perform soft or hard
assignment

Hard Assignment

— Each object (or document in the context of IR) is assigned to one
and only one cluster

+ Soft Assignment (probabilistic approach)
— Each object may be assigned to multiple clusters

— An object X. has a probability distribution P(.|xi) over
clusters C; where P(x,|c, ) is the probability that X; is a
member of C.

— Is somewhat more appropriate in many tasks such as NLP,
IR, ...
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Hard Assignment vs. Soft Assignment (2/2)

« Hierarchical clustering usually adopts hard assignment

« While in flat clustering, both types of assignments are
common
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Summarized Attributes of Clustering Algorithms (1/2)

« Hierarchical Clustering
— Preferable for detailed data analysis

— Provide more information than flat clustering

— No single best algorithm (each of the algorithms is seemingly only
applicable/optimal for some applications)

— Less efficient than flat clustering (minimally have to compute n x n
matrix of similarity coefficients)
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Summarized Attributes of Clustering Algorithms (2/2)

* Flat Clustering

— Preferable if efficiency is a consideration or data sets are very
large

— K-means is the conceptually feasible method and should
probably be used on a new data because its results are often
sufficient

« K-means assumes a simple Euclidean representation space,
and so cannot be used for many data sets, e.g., nominal data
like colors (or samples with features of different scales)

— The EM algorithm is the most choice. It can accommodate
definition of clusters and allocation of objects based on complex
probabilistic models

* |ts extensions can be used to handle topological/hierarchical
orders of samples

— E.qg., Probabillistic Latent Semantic Analysis (PLSA)
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Some Applications of Clustering in IR (1/5)

Cluster Hypothesis (for IR): Documents in the same
cluster behave similarly with respect to relevance to
Information needs

Possible applications of Clustering in IR

Scatter-Gather

Collection c]ustering

Language modeling

Cluster-based retrieval

(subsets of)
collection
collection

collection

collection

presentation to user
alternative user interface:
“search without typing”
effective information pre-
sentation for exploratory
browsing

increased precision and/or
recall

higher efficiency:  faster
search

Application What is Benefit Example
clustered?
Result set clustering result set more effective information Figure 16.2

Figure 16.3

McKeown et al
http://news.google.com

Liu and Croft (2004)

Salton (1971a)

(2002),

— These possible applications differ in
* The collection of documents to be clustered
* The aspect of the IR system to be improved
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Some Applications of Clustering in IR (2/5)

1. Whole corpus analysis/navigation

Better user interface (users prefer browsing over searching since
they are unsure about which search terms to use)

E.g., the scatter-gather approach (for a collection of New York
Tin

Scatter

I 1 I [ 1
1
Education  Domestic 1 Iraq | Ars Sports | i 1 Germany | Legal
! 1 (] 1
| 1 1

\(‘mm/// Users often prefer browsing over searching,

because they are unsure about which
search terms fo use.

1
1
Deployment Politics Genmnyi Pakistan ! Africa D|:f1;11'kets: 0il  Hostages
1

Smaller International Stories

Scatter

! 1

1

i Trinidad i W. Africa 5. Africa  Security  International  Lebanon  Pakistan  Japan

! |
» Figure 16.3 The Scatter-Gather user interface. A collection of New York Times
new c; :.loues is clustered (“scattered”) into eight clusters |\tnp JO‘,\J The user manu-
ally gathers three of these into a smaller collection International Stories and performs
1110&191 scattering operation. This process repeats until a small cluster with relevant
documents is found (e.g., Trinidad).
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Some Applications of Clustering in IR (3/5)

2. Improve recall in search applications

— Achieve better search results by

 Alleviating the term-mismatch (synonym) problem facing the
vector space model

— First, identify an initial set of documents that match the
~%. o5 query (i.e., contain some of the query words)

O A A O o

— Then, add other documents from the same clusters even
If they have low similarity to the query

« Estimating the collection model of the language modeling
(LM) retrieval approach more accurately

P(Q‘MD): Hil\zll[;t' P(Wi‘MD)_"(l_;L)' P(Wi‘MC)]
e

The collection model can be estimated from
the cluster the document D belongs to, instead
of the entire collection

<Q|MD [’1 P |MD) (1 l ( ‘MCIuster(D))] IR~ Berlin Chen 11



Some Applications of Clustering in IR (4/5)

Relevant Docs Answer Set
A
3. Better navigation of search results
. known to the User
— Result set clustering u
Relevant Docs Relevant Docs

. € ” . . known to the Use known to the Use
— Effective “user recall” will be higher which weroretrioved  which were roeved

Rk Ru

web vikipedia hblogs jobs more »

Top 233 results of at least 55,449,081 retrieved for the query jaguar (definition) (details)

clusters
All Results (z25) 1. Jaguar B &
© Jaguar Cars 23 7 The jaguar (Fanthera onca) is a large member of the cat family native to warm regions

, M of the Americas. It is closely related to the lion, tiger, and [eopard of the OId World, and
j i5 the largest species of the cat family found in the Americas.
en.wikipedia. orgfwiki/aguar - [cache] - Wikipedia, Live, Ask
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@ Photos a0
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@ X-Type e 3 Jaglovers B A &
@ Land Rover g All Jaguar's Cars. We support our users by hasting multiple Web Sites and Web-based Farums for the

O Mac 0S X various Jaguar models ... are registered trademarks and are the property of Jaguar Cars, England.
nac (%) Some images may also be @ Jaguar Cars. Mirraring ...
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Some Applications of Clustering in IR (5/5)

4. Speed up the search process

— For retrieval models using exhaustive matching (computing the
similarity of the query to every document) without efficient
iInverted index supports

* E.g., latent semantic analysis (LSA), language modeling
(LM) ?
— Solution: cluster-based retrieval

 First find the clusters that are closet to the query and then
only consider documents from these clusters

— Within this much smaller set, we can compute similarities
exhaustively and rank documents in the usual way
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Evaluation of Clustering (1/2)

 Internal criterion for the quality of a clustering result
— The typical objective is to attain

» High intra-cluster similarity (documents with a cluster are
similar)

« Low inter-cluster similarity (document from different clusters
are dissimilar)

— The measured quality depends on both the document
representation and the similarity measure used

— Good scores on an internal criterion do not necessarily translate
Into good effectiveness in an application
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Evaluation of Clustering (2/2)

« External criterion for the quality of a clustering result

— Evaluate how well the clustering matches the gold standard
classes produced by human judges

* That is, the quality is measured by the ability of the clustering
algorithm to discover some or all of the hidden patterns or
latent (true) classes

— Two common criteria
e Purity
« Rand Index (RI)
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Purity (1/2)

« Each cluster is first assigned to class which is most
frequent in the cluster

« Then, the accuracy of the assignment is measured by
counting the number of correctly assigned documents
and dividing by the sample size

Purity(Q, ") = % > m?x‘a)j Nc,|
Kk

- Q={m,m,,...,0 | the set of clusters
- I'= {Cl, Coynnns C, } . the set of classes

. the sample size

. Purity(Q,T") = (5+4+3) 0.71

IR — Berlin Chen 16



Purity (2/2)

High purity Is easy to achieve for a large number of
clusters (?)
— Purity will be 1 if each document gets its own cluster

— Therefore, purity cannot be used to trade off the quality of the
clustering against the number of clusters
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Rand Index (1/3)

Measure the similarity between the clusters and the
classes in ground truth
— Consider the assignments of all possible N(N-1)/2 pairs of N

distinct documents in the cluster and the true class

Number of
document pairs

Same cluster in
clustering

Different clusters
In clustering

Same class in
ground truth

TP
(True Positive)

FN
(False Negative)

Different classes
In ground truth

FP
(False Positive)

TN
(True Negative)

TP+ TN

RI

T TP+FP+FN+TN
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Rand Index (2/3)
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Rand Index (3/3)

The rand index has a value between 0 and 1

— 0 indicates that the clusters and the classes in ground truth do
not agree on any pair of points (documents)

— 1 indicates that the clusters and the classes in ground truth are
exactly the same
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F-Measure Based on Rand Index

* F-Measure: harmonic mean of precision (P) and recall (R)

Same Different
P _ TP R L TP cluster clusters
— : —
TP+FP TP+FN Same | 1o N
class
Different Fp N
classes

F_ Pl (b2 +1)PR
b> 1 Db’°P+R
R P
— If we want to penalize false negatives (FN) more strongly than
false positives (FP), then we can set b >1 (separating similar
documents is sometimes worse than putting dissimilar

documents in the same cluster)
« That is, giving more weight to recall (R)
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Normalized Mutual Information (NMl)

« NMI is an information-theoretical measure
1(©2;C)
Q)+ H(C))/2

[(©:€) =22 plor e Jlog Sézf )2())

NMI(Q,C)Z(H(

Niw, MC,
‘ « “ (M Lestimate)

N ‘a)kHCj‘
H(Q)=-3 p(ey)log p(e,)
\a)k\

:_z@Iog— (M Lestimate)
k N N

— NMI will have a value between 0 and 1

 NMI has the same problem as purity

— NMI does not penalize large cardinalities and thus does not
formalize our bias, other thing being equal, fewer clusters are better
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Summary of External Evaluation Measures

Table 16.2 The four exterhal evaluation measures applied to

the clustering in Figure 16.4.

purity NMI RI Fs
lower bound 0.0 0.0 0.0 0.0
maximum 1.0 1.0 1.0 1.0
value for Figure 16.4 0.71 0.36 0.68 0.46
b W &
O x ®
. &
X ®
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Flat Clustering
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Flat Clustering

Start out with a partition based on randomly selected

seeds (one seed per cluster) and then refine the initial
partition

— In a multi-pass manner (recursion/iterations)

Problems associated with non-hierarchical clustering

— When to stop ? group average similarity, likelihood, mutual information
— What is the right number of clusters (cluster cardinality) ?

k-1 - k — k+1
Algorithms introduced here \

— The K'means_algorithm Hierarchical clustering is
— The EM algorithm also faced with this problem
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The K-means Algorithm (1/10)

« Also called Linde-Buzo-Gray (LBG) in signal processing
— A hard clustering algorithm
— Define clusters by the center of mass of their members
— Objects (e.g., documents) should be represented in vector form

« The K-means algorithm also can be regarded as
— A kind of vector quantization

« Map from a continuous space (high resolution) to a discrete
space (low resolution)

— E.g. color quantization
» 24 bits/pixel (16 million colors) — 8 bits/pixel (256 colors)
« A compression rate of 3

X — {Xt }t”:l index j s F = {mj }';:1 Dim(x")=24 — | F|=28

m;: cluster centriodor referencevector code word, code vector
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The K-means Algorithm (2/10)

Encoder Decoder

; Communication }
(] . i —
line
m, m;

Y

Find closest

Figure 7.1: Given a, the encoder sends the index of
the closest code word and the decoder generates the

code word with the received index as x’. Error is

/

loe” — 2|,

Total reconstruction error (RSS : residual sum of squares)

au omatic label
Kk
({ —l‘x) Zbl HX

’ 1 ifot—miH:minijt—ij
, whereb' = _
i1 0 otherwise

Mz

I
|

t

— b and m; are unknown in advance
— bt depends on m; and this optimization problem can not be
solved analytically
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The K-means Algorithm (3/10)

* [nitialization
— A set of initial cluster centers is needed {m, :(:1

 Recursion
— Assign each object x! to the cluster whose center is closest

1 iflx' =m.||=min.|x'=m.
t |
bi J J

0O otherwise

— Then, re-compute the center of each cluster as the centroid or
mean (average) of its members

N t t
_ 211 bi X | N
mi — These two steps are repeated until mi stabilizes

t
Z»:\I:]_ b (a stopping criterion)

 Or, we can instead use the medoid as the cluster center ?

(a medoid is one of the objects in the cluster that is closest to
the CentrOId) IR — Berlin Chen 28



The K-means Algorithm (4/10)

« Algorithm

Initialize m;.,1 =1,
Repeat
For all & € X

4
L
0

\

b§<—<

Until m; converge

L |

if | —m;|| = min; ||z’

otherwise

For all m;.1 =1,.

?W_thi x’ Z

k, for example, to k random !

— m|
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The K-means Algorithm (5/10)

Example 1

k—means: Initial After 1 iteration

20 - 20

® of S Y S

. : : : e
x @ : : o @

TP T T T O |

T 20 R o |

-30 : - : ‘ —30 : : :
—40 -20 Q 20 40 —40 -20 0 20 40
x x
1 1
After 2 iterations After 3 iterations

20 - 20

SO e -0} ------ R ELTEELIE L SAREEEEEE 5

e P A 20} e T S :

-30 : : . i -30 : - : i
—40 -20 a 20 40 —40 -20 0 20 40
x

k3

Figure 7.2: Evolution of k-means. Crosses indicate
center positions. Data points are marked depending

on the closest center. IR — Berlin Chen 30



The K-means Algorithm (6/10)

« Example 2

Cluster Members

] ballot (0.28), polls (0.28), Gov (0.30), seats (0.32)  government
profit (0.21), finance (0.21), payments (0.22) finance

3 NFL (0.36), Reds (0.28), Sox (0.31), inning (0.33), sports
quarterback (0.30), scored (0.30), score (0.33)
researchers (0.23), science (0.23) research

5 Scott (0.28), Mary (0.27), Barbara (0.27), Edward (0.29) name

Table 14.4 An example of K-means clustering. Twenty words represented as
vectors of co-occurrence counts were clustered into 5 clusters using K-means.
The distance from the cluster centroid is given after each word.

1S
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The K-means Algorithm (7/10)

« Complexity: O(IKNM)

|: Iterations; K: cluster number; N: object number; M: object
dimensionality

* Choice of Iinitial cluster centers (seeds) Is important

Pick at random

Or, calculate the mean m of all data and generate Kk initial
centers m; by adding small random vector to the mean m=*o6

Or, project data onto the principal component (first
eigenvector), divide it range into k equal interval, and take the
mean of data in each group as the initial center m;

Or, use another method such as hierarchical clustering algorithm
on a subset of the objects

* E.g., buckshot algorithm uses the group-average
agglomerative clustering to randomly sample of the data that
has size square root of the complete set
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The K-means Algorithm (8/10)

* Poor seeds will result in sub-optimal clustering

3 <+
A B C
2+ X X X
D E F
I+ X X X
0 I I '

» Figure 16.7 The outcome of clustering in k-means depends on the initial seeds.
For seeds B and E, k-means converges to { A, B, C}, {D, E, F }, asuboptimal clustering,
For seeds D and F, it converges to {A, B, D, E}, {C, F}, the global optimum for K = 2.
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The K-means Algorithm (9/10)

« How to break ties when in case there are several centers
with the same distance from an object

— E.g., randomly assign the object to one of the candidate clusters
(or assign the object to the cluster with lowest index)

— Or, perturb objects slightly

* Possible Applications of the K-means Algorithm

— Clustering
— Vector quantization

— A preprocessing stage before classification or regression
« Map from the original space to |-dimensional space/hypercube

I=log,k (k clusters)

@

™ Nodes on the hypercube

\

+—— Alinear classifier
IR — Berlin Chen 34



The K-means Algorithm (10/10)

« E.g., the LBG algorithrm M—2M at each iteration
— By Linde, Buzo, and Gray

{M12:212,001}

{m11,201,004}

—
(] ® )
)
. @
............................ A
) o A ()
(] (] ° ¢ g

—

¢ % O 4
se
o .Clustergmean

—

b e

:{-

{H13. 213,013} {M14:214,9

D14}

Total reconstrutionerror
(residualsumof squares)

el i) £ ot -

residual sum of squares

1800 1850 1900 1950

1750
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The EM Algorithm (1/3)

 EM (Expectation-Maximization) algorithm
— A kind of model-based clustering
— Also can be viewed as a generalization of K-means
— Each cluster is a “model” for generating the data
« The centroid is good representative for each model

« Generate an object (e.g., document) consists of first picking a
centroid at random and then adding some noise

— If the noise is normally distributed, the procedure will
result in clusters of spherical shape

* Physical Models for EM

— Discrete: Mixture of multinomial distributions
— Continuous: Mixture of Gaussian distributions
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The EM Algorithm (2/3)

« EMis asoft version of K-mean
— Each object could be the member of multiple clusters ),
— Clustering as estimating a mixture of (continuous) probability distributions

A Mixture Gaussian HMM

P(Xi ‘a)l) (or A Mixture of Gaussians)
P(Xi o, )x P()_(i ‘G)): ép(ii ‘a)k ;®)P(a)k ‘G))

X.
' P(coz ) | ) classification :
| (%|o:0 )P ©)
: - . i| Dk k
P(wy ) P(Xi ‘C’)K \ max P(a)k‘xi ’ ®)_ Mmax P()?J@)
|:> = mex(ii‘a)k;@))P(a)k‘@)
Likelihood function for Continuous case:
_ 1 1, o tear
data samples: X =%,%,,...,%, |P(X|@;0)= - exp(——(xi — fi) T (% — A )j
(277) ‘Zk‘ 2
P(X|®)=1T P(%|®©) X = {8 v %,

n K N X;'s are independent identically distributed (i.i.d.)
— 11 > P(%|o;0)P(w,|®)

i=1 k=1 IR — Berlin Chen 37



no

The EM Algorithm (2/3)

W,
T oo i ®\
e e
! 2') @ / 21
[z a, 1 4 O Sk (02/
X X X @, X O X
f + 0 } } t 0 } } f .

0 2 3 0 1 2 3 0 1 2 3

initial state after iteration 1 after iteration 2

Figure 14.10 An example of using the EM algorithm for soft clustering.
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Maximum Likelihood Estimation (MLE) (1/2)

« Hard Assignment

>
P(B| w,)=2/4=0.5
cluster w,
P(W]| w,)=2/4=0.5
N

O IO _
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Maximum Likelihood Estimation (2/2)

* Soft Assignment  py,)=(0.7+0.4+0.9+0.5)
(0.7+0.4+0.9+0.5

Y Y
(D +0.3+0.6+0.1+0.5) (D
=2.5/4=0.625
State w, P(W,)=1- P(W,)=0.375 State w,
\K\—v/v/ W
\\\\ \\\\\ /////'///
\ N \ \\ // Ve /
\ \\ \\ NS 7 O;’ // ’ //
\ ~ ~ N 7 7/ // /
MU N AR -7 AR AR
v oy 804 S 067 7
\ \\ N ‘ e // //
— \
P(B|UL)1)—(O7+O9)/ \\ \\ \\ // // //P(Blwz):(03+01)/
(0.7+0.4+08+0.5) %, 0.9 \Or0L” (0.3+0.6+0.1+0.5)
=1.6/2.5=0.64 N // R4 =0.4/1.5=0.27
\ > ’ 4
~ Q;S “ O',5’ P(B|W,)=(0.6+0.5)/
P(Blwl)—(0-4+8-§)/o4 0940 . R4 (0.3+0.6+0.1+0.5)
+0.4+0.9+
(0.7+0.4+0.9+0.5) NOX =0.11/1.5=0.73

=0.9/2.5=0.36
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Expectation-Maximization Updating Formulas (1/3)

Expectation
P(%|o, , ©)P(c,|®)

7/i — K
‘ EP(K‘@U@)P(C‘)I‘@)

— Compute the likelihood that each cluster @, generates a
document vector X

IR — Berlin Chen 41



Expectation-Maximization Updating Formulas (2/3)

« Maximization

— Mixture Weight
N 2. Vik 2. Vik
Plo, @) = ==
S T

— Mean of Gaussian

~ Z]:_yik
Ay = =

2. Vi

1'=1
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Expectation-Maximization Updating Formulas (3/3)

« Covariance Matrix of Gaussian

é?ﬁk '()?i _/L:ka)_ii _flk)T

_z Yik
i'=1

IR — Berlin Chen 43



More facts about The EM Algorithm

« The Initial cluster distributions can be estimated using
the K-means algorithm, which EM can then “soften up”

« The procedure terminates when the likelihood function
P(X|®) is converged or maximum number of
iterations Is reached

IR — Berlin Chen 44



Hierarchical Clustering

IR — Berlin Chen 45



Hierarchical Clustering

« Can be in either bottom-up or top-down manners
— Bottom-up (agglomerative) s«

« Start with individual objects and try to group the most similar
ones

— E.g., with the minimum distance apart

1 distance measures will

sim(x, y)= 1—|—d(X y) . bediscussed later on

« The procedure terminates when one cluster containing all
objects has been formed

— Top-down (divisive) *~# &

« Start with all objects in a group and divide them into groups
S0 as to maximize within-group similarity
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Hierarchical Agglomerative Clustering (HAC)

A bottom-up approach

Assume a similarity measure for determining the
similarity of two objects

Start with all objects in a separate cluster (a singleton)
and then repeatedly joins the two clusters that have the
most similarity until there is only one cluster survived

The history of merging/clustering forms a binary tree or
hierarchy

IR — Berlin Chen 47



HAC: Algorithm

1 Given: a set X = {x1,... xn} of objects

2 a function sim: P(X) x P(X) - R

3 fori:=1tondo Initialization (for tree leaves):

. Cj := {X,‘} end Each object is a cluster

SC:: {Cl,...,Cn}

6§ li=n+1

7 while|C|> 1 cluster number

8 (Cnys Cny) 1= Argmax ., . yecxc Sim(cy, cy)

9 Cj = Cny Y Cn, merged as a new cluster

10 C:= C\{Cm ’ an} U {Cj} The original two clusters

11 Ji=j+1 are removed
Figure 14.2 Bottom-up hierarchical clustering.

* ¢, denotes a specific cluster here
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Distance Metrics

* Euclidian Distance (L norm)

L,(X,y) = Z(X -Y)°

— Make sure that all attrlbutes/dlmen5|ons have the same scale (or
the same variance)

* L, Norm (City-block distance)
Ll()_(’ y) — Z‘Xi o yl‘
=1

« Cosine Similarity (transform to a distance by subtracting
from 1)

_—  —

1 =Y
X|- Y]

ranged between 0 and 1
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Measures of Cluster Similarity (1/9)

« Especially for the bottom-up approaches

1. Single-link clustering

— The similarity between two clusters is the similarity of the two
closest objects in the clusters

— Search over all pairs of objects that are from the two different
clusters and select the pair with the greatest similarity

— Elongated clusters are achieved

sim(c Yoy )= max sim(X.y)

Xew; yew;

cf. the minimal b

spanning tree a K
—— c o
© f

Id

greatest similarity >

|
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Measures of Cluster Similarity (2/9)

2. Complete-link clustering

— The similarity between two clusters is the similarity of their two

most dissimilar members

— Sphere-shaped clusters are achieved

— Preferable for most IR and NLP applications

sim(@, ;)= min sim(X,y)

Xea}l ,yea)J

least similarity

— More sensitive to outliers

-4 -3 -2 -1 0 1 2 3

L

» Figure 17.6  Outliers in complete-link clustering. The four points have the coor-
dinates —3+2 x €,0,142 x ¢,2and 3 — e. Complete-link clustering creates the two
clusters shown as ellipses. Intuitively, {b,c,d, e} should be one cluster, but it is split
by outlier a.
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Measures of Cluster Similarity (3/9)

b d
5 ks, g X “x X
4 = B
e 2d
d
2 ™
3d
1 + 2
eX fX gX hX
0 ! f } } } f t }
0 1 2 3 4 5 6 7 8
Figure 14.4 A cloud of points in a plane.

single link

§

0
Figure 14.5

Intermediate clustering of the points in figure 14.4.

Figure 14.7 Complete-link clustering of the points in figure 14.4.
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larity (4/9)
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A dendrogram of a single-link clustering of 30 documents from
The y-axis represents combination similarity, the similarity of the

two comporent clusters that gave rise to the corresponding merge. For example,

* Figure 17.1

When cutting the last merger, we

This complete-link clustering is more balanced than the single-link
obtain two clusters of similar size { documents 1-16 and documents 17-30). The y-axis

® Figure 17.4 A dendrogram of a complete-link clustering of 30 documents from

clustering of the same documents in Figure 17.1.

Reuters-RCWV 1.

.S, grilling is

yid's CEC questioned and Lioyd's chief /

0.56. Two possible cuts of the dendrogram are showne at 0.4 into 24 clusters and at

0.1 into 12 clusters.

the combmation similarity of Ll

Feute rs- ROV L

.

represents combination similarity,
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Measures of Cluster Similarity (5/9)

3. Group-average agglomerative clustering
— A compromise between single-link and complete-link clustering

— The similarity between two clusters is the average similarity
between members

— If the objects are represented as length-normalized vectors and
the similarity measure is the cosine

* There exists an fast algorithm for computing the average
similarity

_ _XY g
sim(X, ¥) = cos(X,y)= =Xy

| Hyl

length- nor'mallzed vectors
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Measures of Cluster Similarity (6/9)

3. Group-average agglomerative clustering (cont.)

— The average similarity SIM between vectors in a cluster w; is defined as

SIM (@, )= = > anm(x y)= . 2 XXy
m R el

— The sum of members in a cluster w;: S (60 )— > X

XEO)J

— Express SIM(w,) in terms of §(coj)

Xewj; YVYew;

|a)j |(Ia)J | —1)
IR — Berlin Ch

§(a) ) S(a) )— ZX S(a) )— > 2>~ X - Ylength-normalized vector

en 55




Measures of Cluster Similarity (7/9)

3. Group-average agglomerative clustering (cont.)

-As merging two clusters c;and c;, the cluster sum
Vectors g(», ) and S(a) ) are known in advance

=) S(@pen) = 5(@)+5(@;), |Opeu| = | +|eo;| &+,
— The average similarity for thelr union will be O/CK
SIM(a)iua)j)= o C?
[ J
5(@)+5(@,))- 5(@)+5(@,)- (@] |,
(]a)i|+‘a)j‘X]a)i|+‘a)j‘—l)
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Measures of Cluster Similarity (8/9)

4. Centroid clustering

— The similarity of two clusters is defined as the similarity of their
centroids

sim(w,, @, )= fi(e,)- filw;)

1 _, 1 _
= — >X || — =X
(Ni XS%:@,SJ [Nj ztz)JtJ

1 .
Z ZXS'Xt

NI Nj )_(.SEQ)i itEC()J
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Measures of Cluster Similarity (9/9)

« Graphical summary of four cluster similarity measures

4 4
3+ 3+
2 + 2+
1+ 1+
0 1+ 0 Y
01 2 3 4 5 6 7 o 1 2 3 4 5 & 7
(a) single link: maximum similarity (b) complete link: minimum similarity
4T 4 -
3+ 3+
2+ 2+
1T+ 1+
0 —t———t— 0 —t————
01 2 3 4 5 6 7 01 2 3 4 5 6 7
(c) centroid: average inter-similarity (d) group-average: average of all similarities

Flgwe 17.3 The different notions of cluster similarity used by the four HAC algorithms. An
inter-similarity is a similarity between two documents from different clusters.

clustering algorithm sIM(i, k1, ko)

single-link max(sim(i, kq), sim(z, ko))

complete-link mm(SIM( 1\1) sTM(Z, k2))

centroid N ,”) v;)

grotp-average NN NN —1)[(1 w+ i) = Ny + N IR - Berlin Chen 58




Example: Word Clustering

* Words (objects) are described and clustered using a set
of features and values
— E.g., the left and right neighbors of tokens of words
Il

1

higher nodes:
decreasing
of similarity

L

be not he I it this the his a and but in on with for at from of to as is was

Figure 14.1 A single-link clustering of 22 frequent English words represented
as a dendrogram.

"be" has least similarity with the other 21 words !
IR — Berlin Chen 59



Divisive Clustering (1/2)

A top-down approach
Start with all objects in a single cluster

At each iteration, select the least coherent cluster and
split it

Continue the iterations until a predefined criterion (e.g.,
the cluster number) is achieved

The history of clustering forms a binary tree or hierarchy

IR — Berlin Chen 60



Divisive Clustering (2/2)

* To select the least coherent cluster, the measures used In
bottom-up clustering (e.g. HAC) can be used again here
— Single link measure
— Complete-link measure
— Group-average measure

 How to split a cluster
— Also is a clustering task (finding two sub-clusters)

— Any clustering algorithm can be used for the splitting operation,
e.g.,
« Bottom-up (agglomerative) algorithms
« Non-hierarchical clustering algorithms (e.g., K-means)
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Divisive Clustering: Algorithm

1 Given: aset'X = {xi,...Xu} of objects

2 a function coh: P(X) — R

3 a function split: P(X) — P(X) x P(X)

¢ C=4X} (={er})

5 . == 1

6 whlle dag e Cst lcgl>1

7 P Cuzargmlncec COh(Cv) split the least coherent cluster

8 i (o) =split(cy)

9 C:=C\{cu} U {cjs1,Cjs2} Generate two new clusters and

10 Jr= ey remove the original one
Figure 14.3 Top-down hierarchical clustering.

* c, denotes a specific cluster here
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Hierarchical Document Organization (1/7)

« Explore the Probabillistic Latent Topical Information
— TMM/PLSA approach

A document model Two-dimensional

) Tree Structure
OO for Organized Topics
OO

Document

D, = WiWy W W

P(w;|D; )= él P(Ti|D { EP(TI Vi )P w1, )} A E(T, Ty )

| =1 ‘ =
zE(Ts’-rk)
s=1

« Documents are clustered by the latent topics and organized in a two-
dimensional tree structure, or a two-layer map

* Those related documents are in the same cluster and the relationships
among the clusters have to do with the distance on the map

* When a cluster has many documents, we can further analyze it into an

other map on the next layer
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Hierarchical Document Organization (2/7)

 The model can be trained by maximizing the total log-
likelihood of all terms observed in the document collection

i Di )IogP( J|Di)

1=1 n=
_ % i_lc(w D )Iog{ > P Tk|Di{|§1P(T| Vi P (w; [T, )}}
— EM training can be performed
N
i ZC(WJ,Dl)P(Tk |WJ,D|)
P(Wj |Tk) - IZI{I where
DI C(W D;- ) (Tk |Wj'1Di') {EP(W T )P (ﬂ”k)} P(Te 1D;)
j'=1i'=1 P(Ty |w; D; )= —H

, g {{E P( Wi |T|')P(T|’ |Tk’)] P(T | D; )}
_Zlc(w,- D P(Tic | w; ;)

. e

P(T I D;)= GY
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Hierarchical Document Organization (3/7)

 Criterion for Topic Word Selecting
— Topic Ratio
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Hierarchical Document Organization (4/7)

« Example

BEE WREE WHRO ReREW IR0 SHHO

ft Internet Explorer
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Hierarchical Document Organization (5/7)

« Example (cont.)
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Hierarchical Document Organization (6/7)

« Self-Organization Map (SOM)
— A recursive regression process

Input Vector X = [X11 X2 5:00 X ]T ! X

mi (t +1) — mi (t) + hc(x),i (t) [X(t) T mi (t)] where \/
=1 = bty =

2

c(X) =argmin
II

|X—mir

Hrl _rc

hc(x),i (t) = a(t) eXp{ 552 g)) J
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Hierarchical Document Organization (7/7)

Results
Model lterations distg.een/ d1Styitnin
10 1.9165
20 2.0650
TMM
30 1.9477
40 1.9175
SOM 100 2.0604
iy [t T T
ol |o] petween 0 otherwise
Z fBetween (I’ J)
iStouyeen = 55 distyep () = /06 =, F + (v, = v, ]
d i=1 J:|+1CBetween 1) C . j) { 1 T,#T,;
IS Between \*1 = O th .
RDISt _ tBetween e . -o- erwise
d I St/\/lth in z i (i ) ) :{dIStMap(I!J) Ty :Tr-,j
distyigin = "S‘l JrD“*l 0 otherwise
|Z=: J=H1CWithin(i1 ) Cwithin(l, J)={ i) Z;r:;:v:;e
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