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Outline

« Alternative Set Theoretic Models
— Fuzzy Set Model (Fuzzy Information Retrieval)
— Extended Boolean Model

* Alternative Algebraic Model
— Generalized Vector Space Model
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Fuzzy Set Model

* Premises

— Docs and queries are represented through sets of
keywords, therefore the matching between them is
vague

« Keywords cannot completely describe the user’'s
information need and the doc’s main theme

— For each quyery term (keyword)
 Define a fuzzy set and that each doc has a degree
of membership (0~1) in the set
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Fuzzy Set Model (cont.)

* Fuzzy Set Theory

— Framework for representing classes (sets) whose
boundaries are not well defined

— Key idea is to introduce the notion of a degree of
membership associated with the elements of a set

— This degree of membership varies from 0 to 1 and
allows modeling the notion of marginal membership

* 0 —»no membership
* 1 —full membership

— Thus, membership is now a gradual instead of abrupt
* Not as conventional Boolean logic

Here we will define a fuzzy set for each query (or index) term,
thus each doc has a degree of membership in this set.
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Fuzzy Set Model (cont.) U

A

 Definition u
— A fuzzy subset A of a universal of discourse U is

characterized by a membership function
/uA: U— [011]

* Which associates with each element u of U a
number wu,(u) in the interval [0,1]

— Let A and B be two fuzzy subsets of U. Also,
let A be the complement of A. Then,

« Complement 4, (u)=1-p,(u)
« Union H o) =max(uy(u), ug(u))
* |ntersection U y~p) =min 4(u), (1))
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Fuzzy Set Model (cont.)

* Fuzzy information retrieval Sefining term relationshis
— Fuzzy sets are modeled based on a thesaurus

— This thesaurus can be constructed by a term-term
correlation matrix (or called keyword connection matrix)

¢ . aterm-term correlation matrix
- €, :anormalized correlation factor for terms k; and k,

c = i n , :no of docs that contain k;
o n.+n, —n,_, n ., . no of docs that contain both k;and k,
ranged from O to 1 docs, paragraphs, sentences, ..

* We now have the notion of proximity among index terms

— The relationship is symmetric !

My (kl): Cii =€ = My, (ki)

IR — Berlin Chen 7



Fuzzy Set Model (cont.)

* The union and intersection operations are

modified here U ab +@b +ab
A, =ab+(1-a)+a(l-b)
A2 =ab+b—-—ab+a-—ab
- . =1-(1—-a—-b+ab)
—1-(1—a)1-b)

- Union: algebraic sum (instead of max)
Haoa, (K) = g () g (k) + g (k) gy, () + g (K) g (k) oy, () =g, (6)

2
=1-T] (1-ﬂ 4 ,(k)) = - L1 (l-uAj(k))
J=1 ! a negative algebraic product

- Intersection: algebraic product (instead of min)

1#Aj(k)

g=E

/uAlf\Az (k)::uAl (k):qu (k) |:> Hand,--nA4, (k):
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Fuzzy Set Model (cont.)

— The degree of membership between a doc d; and an

iIndex term K; algebraic sum (a doc is a union of index terms) .
lukl(d]):ludj(ki)_lukud kl(kl) k l—¢ 1,_0
ek IS ]

- Computes an algebraic sum over all terms in the doc d
- Implemented as the compiement of a negative
algebraic product

— A doc d; belongs to the fuzzy set associated to the term
K; if its own terms are related to k;

* Ifthere is at least one index term k; of d; which is strongly
related to the index k; ( ¢, ~1 ) then Hid ~1

— k;is a good fuzzy index for doc d,
- And vice versa IR — Berlin Chen 9



Fuzzy Set Model (cont.)

 Example:

— Query q:ka A (kb \/ _'kc) disjunctive normal form
Qur=(ky A kA k) v (kg A Ky~ — K) vk, A =Ky A —K)

=CC7 +CCZ+CC3 ¥~ cohjunctive component
D
a A b
— D, is the fuzzy set of docs e‘
associated to the term k, ‘

]

D

— Degree of membership ?

c
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Fuzzy Set Model (cont.)

D, D,
* Degree of membership ’A‘

/"UQ(d ) :ucclucczuccg (d]) -
nega’rive algebr‘aic Er‘oduc’r D
C

foradoc d; in

the fuzzy answer
qu ns _1 H(l ,ch( )) 002 CCy

z_ P A ~
=]- ] ,uaAbC JY\] ~Harbre d]//Y\] ﬂamgff(dj/)m

_daigebraic proauct
=1-(1- ﬂa( ) ( ) (d]))

L A ST 73 YR PR B )
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More on Fuzzy Set Model

« Advantages
— The correlations among index terms are considered

— Degree of relevance between queries and docs can
be achieved

« Disadvantages
|:||77\1 IR mndele have heen Adicerrice

— or cn
LLYy 1T\ Mogeis nave peen giscusse

literature associated with fuzzy theory

— Experiments with standard test collections are not
available

— Do not consider the frequecny (or counts) of a term in
a document or a query

A mainhy h
a maini n e
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Extended Boolean Model
Salton et al., 1983

* Motive
— Extend the Boolean model with the functionality of
partial matching and term weighting Miokh 2 E4E

* E.g.: in Boolean model, for the gery g=k, A k,, a
doc contains either k, or k,, is as irrelevant as
another doc which contains neither of them

* How about the disjunctive query q=k, v K, ks & &4

— Combine Boolean query formulations with
characteristics of the vector model

* Term weighting a ranking can
« Algebraic distances for similarity measures| Pe obtained
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Extended Boolean Model (cont.)

* Term weighting
— The weight for the term k, in a doc d; is

- ey

idf ranged from O to 1

* W _; is normalized to lie between 0 and 1

* Assume two index terms k, and k, were used
— Let x denote the weight W, ; of term k, on doc d;
— Let YV denote the weight W, ; of term k, on doc d;
— The doc vector d, =(w,,w_)is represented as d,=(x,y)
— Queries and docs can be plotted in a two-dimensional
map
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Extended Boolean Model (cont.)

 |If the query is q=kx A ky (conjunctive query)
-The docs near the point (1,1) are preferred
-The similarity measure is defined as

sim(q,,.,d)=1- \/(1 —x) +(1=y) 2-norm model
2 (Euclidean distance)

142 Ky
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Extended Boolean Model (cont.)

 |If the query is q=kx \% ky (disjunctive query)
-The docs far from the point (0,0) are preferred
-The similarity measure is defined as

, \/362+)/2
sim (q,,,d )= >

/42 K,

2-norm model
(Euclidean distance)

D

k, 142
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Extended Boolean Model (cont.)

» The similarity measures sim (¢, ,d) and
sim(q, ,,d) also lie between 0 and 1
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Extended Boolean Model (cont.)

Generalization
— tindex terms are used — t-dimensional space
— p-norm model, 1 < p < ©

P p P
g, = kl v 7 k2 v 7 ...Vpkm :> Sim(QOr,d)—(xl +X, +..+X ]

— Some interesting properties Similar to vector space model
X X, Fo.tX

e p=1 = szm(q d,d) Slm( »d): 1
m
* p=00 ':> Slm(Qand’d)zmln(xi) } just like the

Sim(qor, a’) ~ maX(xl.) formula of fuzzy logic
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Extended Boolean Model (cont.)

 Example query 1: ¢ =(/7c1 N kz)vp k,
— Processed by grouping the operators in a predefined
order L

£(<><>H

2

sim (q,d )=

/S
« Example query 2: g=\k, V' k, A"k,
— Combination of different algebraic distances

( 1 )
x4+ x,0)?
sim (¢,d )= min ( 1 2 ) , X,
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More on Extended Boolean Model

« Advantages

— A hybrid model including properties of both the set
theoretic models and the algebraic models

— That is, relax the Boolean algebra by interpreting
Boolean operations in terms of algebraic distances

« By varying the parameter p between 1 and infinity,
we can vary the p -norm ranking behavior from that
of a vector-like ranking to that of a fuzzy logic-like
ranking

* Have the possibility of using combinations of
different values of the parameter p in the same
query request



More on Extended Boolean Model (cont.)

« Disadvantages

- Distributive operation does not hold for ranking
computation

* E.9.:
g, =k A2 VP kg, = (VP ey ) A2 (ky VP )

sim (qg,,d )= sim (q,,d) 1{[l[xf;x;ﬁ (i) }

2

ottty %
2

— Assumes mutual independence of index terms
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Generalized Vector Model
Wong et al., 1985

* Premise
— Classic models enforce independence of index terms
— For the Vector model

 Set of term vectors {71,—/@, ...,_I?t} are linearly
independent and form a basis for the subspace of
interest
* Frequently, it means pairwise orthogonality
Vij :>_I;,- ’k7= F(in a more restrictive sense)
* Wong et al. proposed an interpretation

— An alternative intepretation: The index term vectors are
linearly independent, but not pairwise orthogonal

 Generalized Vector Model
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Generalized Vector Model (cont.)

* Key idea
— Index term vectors form the basis of the space are not

orthogonal and are represented in terms of smaller
components (minterms)

* Notations
— {k, k,, ..., k,}: the set of all terms

— w; ;- the weight associated with [k;, d]
- Minterms:binary indicators (0 or 1) of all patterns of
occurrence of terms within documents

« Each represent one kind of co-occurrence of index terms in a
specific document
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Generalized Vector Model (cont.)

* Representations of minterms

m.=(0,0,....,0)
m,=(1,0,....,0)
m;=(0,1,....,0)
—m4=<1,1, ,0) <
~=(0,0,1,..,0)
m2t=(1,1'1, 1)
2! minterms

____Points to the docs where only
index terms £, and k, co-occur and
the other index terms disappear

— Point to the docs containing
all the index terms

m,=(1,0,0,0,0,....,0)
m,=(0,1,0,0,0,....,0)
m,=(0,0,1,0,0,....,0)
7,=(0,0,0,1,0,....,0)
m,=(0,0,0,0,1,....,0)

m,=(0,0,0,0,0,....,1)

2t minterm vectors

Pairwise orthogonal vectors m;
associated with minterms m,

as the basis for the generalized
vector space
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Generalized Vector Model (cont.)

 Minterm vectors are pairwise orthogonal. But,
this does not mean that the index terms are
iIndependent

— Each minterm specifies a kind of dependence among
Index terms

— That is, the co-occurrence of index terms inside docs
In the collection induces dependencies among these
iIndex terms
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Generalized Vector Model (cont.)

The vector associated with the term k; is

represented by summing up all minterms
containing it and normalizing

- Z‘v’r,gi(mr):l Ci,rn_/ir
2

k. =
\/Z‘v’r,gi(mr)=l Cirr

[ = Vr,g.(m, 1 Ai,r_)r
2, (m, )1 Cir

A 1,r
where c¢; . =
\/Z Vr.o.(m. =1 Cizr «  The weight associated with the pair [k;, m/]
°S 1\ r o . .
sums up the weights of the term k; in alll
the docs which have a term occurrence
.= .. attern given by m..
Cir = __ IR Z _______________ Wi i barem 9 S .
:d- (d): ( ) forall] | * Notice that for a collection of size N,
47|18\ g\ ), | only N minterms affect the ranking (and not 2V)

All the docs whose term co-occurrence
relation (pattern) can be represented
as (exactly coincide with that of) minterm m,

¢, (m,) Indicates the index term k; is in the
minterm m,
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Generalized Vector Model (cont.)

* The similarity between the query and doc is
calculated in the space of minterm vectors

= Z w, ik, = = Z S ;,m
r
Zwlq , = =D 5,0,
t-dimensional g 2i-dimensional
> W

in @4)) \/Z " Jz "

. d.r
\/Z s, \/Z
IR — Berlin Chen 27
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Generalized Vector Model (cont.)

+ Example (a system with three index terms)

minterm | k; k; ks K, — ¢,y ¢ M, FC M+
m; 0 0 0 1 2 2 2 2
m; 1 0 0 \/Cl,z TC, TC, TC;
m; 0 1 0 - - - -
my 1 1 0 - CyyMmy+C, My +C, My +C, My
m; 0 0 1 2 2 2 2 2
mg 1 0 1 Cys +Cz,4 +Cz,7 +Cz,8
m; 0 1 1 ~ ¢y M +Cy g +Cy L my - C T
mg 1 1 1 ks k= 2 2 2 2

\/Cz,s TC TC, TG,
k; k, k; minterm
2 0 1 - 7 7 7 »

d Mg c o =w . +w =1+2=3 7 _3m+1lm +2m +1m,

d, 1 0 0 m; e - h T \/ 2 12 2 12

d; 0 1 3 m, c,=w, =1 3 +17+27+1

d4 2 0 0 m; _ o

d5 1 2 4 mg Cl,6 - Wl,l - 2

d6 1 2 0 my C ¢ = 1/1/’1,5 =1

d7 0 5 0 nm;

q 1 2 3

c,. =0

23 = Wy = 5 3 |

e = W, =2 ; S, + 2, +1in, + 2, Cie = Wii = i :Om5+1m6+3m7+4m8
_ _ 2 c = w =3 3 2,12 2 2

2,7 Wis 1 \/52 +22 _|_12 +22 3,7 3,3 \/O +1°+3°+4
=w,, =2 ¢ = Wy = 4 IR — Berlin Chen 28



Generalized Vector Model (cont.)

=~ 3m,+1m, +2m +1m, 3m,+1m, +2m, +1m,

EXGmP|e: Ranking k= N3+ 422+ ) J15

P Sm, +2m, +1m, +2m, _ Sm, +2m, +1m, +2m,

, =

P Om, +1m, +3m, +4m, _ 1m,+3m, +4m,
V5 42 412427 J34 o JO 1R 43 44 J26
dl = 2k + lk Sd1,6 Sd1,7 Sd1,8

Sd12 . , .
SR I R (22 1-1J4 1.3 . (2-1 1-4}
m m, + + m, + m, m

NIRRT *Tos 75

G =1k +2k, 31?
—Eﬁwﬁ*+/1'1+2'2\ﬁ¢+/1'2+3'1\* (21 3.3). /1-1+2.2+3.4\%
N W7 L W/ L Wer s M W e
Sq.2 Sq,3 Sq.4 Sq.6 Sq,7 S

q.8

Z Sq,r ’ Sd,r

‘s »#0As, 720

2 2. s,

, #0ns, , #0 ‘s »#20ns, 20

The similarity between the query and doc is
calculated in the space of minterm vectors

sim (q, d) consine (¢q,d) =
i

Sg28a2 T 55454,4 T85656 TS¢.754,,7 75,854 3

Sim(%dl):

2

2 2 2 2 2 2 2 2 2 2
\/S + S + S + S + S + S \/S + S + 5 + 5 + S .
q.3 q,4 q,6 q,7 q.8 di,2 di,4 d,6 di,7 di,8 IR — Berlin Chen 29
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Generalized Vector Model (cont.)

e Term Correlation

— The degree of correlation between the terms k; and k;
can now be computed as

kl’k]: Z Ci,l/'xcj,f’
rlg;(m,)=Ing ;(m, )=]

* Do not need to be normalized? (because we have
done it beforel See p26)
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More on Generalized Vector Model

« Advantages
— Model considers correlations among index terms
— Model does introduce interesting new ideas

« Disadvantages

— Not clear in which situations it is superior to the
standard vector model

— Computation cost is fairly high with large collections

 Since the number of “active” minterms might be proportional
to the number of documents in the collection

Despite these drawbacks, the generalized vector model does introduce
new ideas which are of importance from a theoretical point of view.
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