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Discriminatively-Trained Language Models (1/9)

« A simple document-based language model (LM) for
information retrieval can be represented by

N

P(Q‘D 1s R): I1 [mlP(qn‘D)Jr mzP(qn‘CorpuS )]

n=

— The use of general corpus LM P( _|Corpus ) is for probability
smoothing and better retrieval performance

— Conventionally, the mixture weights m,, m, (m, + m, =1) are

empirically tuned or optimized by using the Expectation-
Maximization (EM) algorithm

AP, |D) A mixture of N

probability distributions

0=9192-9,-9n

P(qn‘Corpus ) m, +m, =1

- D.R.H. Miller et al., "A hidden Markov model information retrieval system, SIGIR 1999.
- Berlin Chen et al., "An HMM/N-gram-based Linguistic Processing Approach for Mandarin Spoken Document Retrieval," Interspeech 2001
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Discriminatively-Trained Language Models (2/9)

* For those documents with training queries, m, and m,
can be estimated by using the Minimum Classification
Error (MCE) training algorithm

— The ordering of relevant documents p* and irrelevant documents D’
in the ranked list for a training query exemplar Q is adjusted to

preserve the relationshipsp® < p'; i.e., p*should precede D’ on
the ranked list

* A learning-to-rank algorithm
— Documents thus can have different weights

- Berlin Chen et al., "A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents,”
ACM Transactions on Asian Language Information Processing 3(2), June 2004.
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Discriminatively-Trained Language Models (3/9)

e Minimum Classification Error (MCE) Training

— Given aquery O and adesired relevantdoc D* , define the
classification error function as:

E(Q,D") = 1L log P(Q‘D* is R)+(ﬁé);};;\)10g P(Q‘D' i1s not R)]

0]

\ Also can take all irrelevant doc
in the answer set into consideration

“>0”: means misclassified; “<=0": means a correct decision

— Transform the error function to the loss function , L(0,D")

L(Q,D") = L - 1

1+ exp(—aE(Q,D*)+ f) //
b

 In the range between 0 and 1
— « :controls the slope
— [ :controls the offset

»

E(Q,D")
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Discriminatively-Trained Language Models (4/9)

e Minimum Classification Error (MCE) Training

— Apply the loss function to the MCE procedure for iteratively
updating the weighting parameters loss 4

function
* Constraints:

v

@ m, 20, YXm, =1
« Parameter Transformation, (e.g.,Type | HMM) () ,:m

i e’
¢! and m, = — -
e + e ert + et

m, =

— lteratively update m (e__g___'l_'_y_p_)je__l_!-_l_l\_/l_ﬁ/l_}_ Gradient descent

i (1) = i, ()=o) 222D

om, |
- Where, / —————————————————————— I
0) dL(Q,D™) 0L(Q,D")

= L(Q,D*)[I_L(QaD*)]

VD",m = & am aE(Q’D*)
() oL (Q, D ) 8E(Q D )
0E(QO,D ") o |
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Discriminatively-Trained Language Models (5/9)

* Minimum Classification Error (MCE) Training
— lteratively update m , (e.g., Type | HMM)

Note
i, i og /()] = L
5 0 e pls 1D e s | }} [log f(x) f( )
OE(Q,D") -1 {q,,zeQ Og[e% + e (q”‘ )+ em + e (q”‘ o ) [f(x)ggx)] = f'(x)g()+ f(x)e'(x)

o, o om [£60] _ £ G rs'C)

. (e%_f:l% y [e%P( )+ erﬁzP( . |Corpus )] emlilemz P(qn D*)
- Z J _ _ _ _ ,f\‘

‘Q‘ q,€0 \‘\ e . em -—-- \

Uoretren oo )e 2 Plafeoma) L
; o Plap)

= Nem1N _1 3 < ’% em + em ,ﬁ‘ X

ren ol e ) o )

e +em e + e

N B mlp(qn‘D*)
: ‘Q‘qneQ mlP(qn‘D*)+ mzP(qn‘CorpuS) ’
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Discriminatively-Trained Language Models (6/9)

e Minimum Classification Error (MCE) Training
— lteratively update m

Vs () ==2(i)-a- L(Q p*)-[1-L(0, 0]
el m (P, |°) }
the new weight " ‘ ‘q 0 ml(l)P( . )+ mz(i)P(qn‘Corpus ) ’

\ em1(1+1)

m1(i+ 1): o1 Grl) L s Grl)

)= m ()Y (D)

el’ﬂ](!’)e_vD*,lﬁl(i)

w (D Vet i @), Y et (D

erﬁl(i)eivD*ﬁl(i)/(e'ﬁ1(i)+ €M2(i))

[eﬁl(i)evD*ﬁlm/(e,al(,-)Jr eﬁz(,’))} N [eﬁz(i)eVD*,ﬁz(i)/(e,al(i)+ ezﬁz(i))]
the old weight

\>
1(1)6 ot
1(’)8 ot +m2(l)e ot ()
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Discriminatively-Trained Language Models (7/9)

* Minimum Classification Error (MCE) Training
— Final Equations
* lteratively update m |

V,. ()=-s()a-1(0,0°)[1-1(0,D")]
1oL m,())P(g,[D")
O o1 Pl D )+ m, ()P g [Comprs )
ml(l')'e_vD*"ﬁl(i)

. —VD* i1 (i) . —VD* iy (i)
m (i)-e °° +m (i)-e °

ml(i+1):

« m, can be updated in the similar way
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Discriminatively-Trained Language Models (8/9)

« Experimental results with MCE training

Average Precisior] Word-level Syllable-level Fusion
Uni Uni+Bi*
TQ/TD 0.6459 0.6858 0.7329 . —
Before ...l Q .............. e (06327) (0571 8) Iteratlons_1 OO
WCE Training | TDT2 Tq/SD| 0.5810 0.6300 0.6914
(0.5658) (0.5307)
7 TQ/TD
c S
) ‘»
R ©
o TQISD e
a | T P
o >
z, <
MCE Iterations (Word-based) MCE Iterations (syllable-based)

— The results for the syllable-level indexing features were
significantly improved
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Discriminatively-Trained Language Models (9/9)

« Similar treatments have been recently applied to

Document Topic Models (e.g., PLSA) and Word Topic
Models (WTM) with good success

* For example, the ranking formula for PLSA can be
represented by

P(q‘D) =a- (,8 : [% P(q‘Tk )P(Tk ‘D)} + ( ) (q‘CorpuS)j (1 a) P(q‘D)
— %aﬂ - P(q‘Tk )P(Tk‘D)+ a(l ) (q‘CorpuS) (q )
= %([aﬂ - Pq|T; )+ a(1- B)- Plg|Corpus)+ (1) P(Q\D)]P(T D))

— The weighting parametersa and g document topic distributions
P(1,|D) can be trained by the MCE algorithm
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Vector Representations

« Data points (e.g., documents) of different classes (e.g.,
relevant/non-relevant classes) are represented as
vectors in a n-dimensional vector space

— Each dimension has to do with a specific feature, whose value

usually is normalized
decision hyperplane of a

° two-class problem wiX+ b
decision function D= {3_5,-, ’. }l]\il
f(%)=sign (%% +5) : /
data point class label
(e.g., +1,-1)

* Support vector machines (SVM)

— Look for a decision surface (or hyperplane) that is maximally far
away from any data point

— Margin: the distance from the decision surface to the closest
data points on either side (or the support vectors)

— SVM is a kind of large-margin classifier R — Berlin Chen 11



Support Vectors

 SVM is fully specified by a small subset of the data (i.e.,
the support vectors) that defines the position of the
separator (the decision hyperplane)

maximum support vectors
margin
decision

hyperplane The support vectors are 5 points right

up against the margin of the classifier

’/— Intercept term

x + b

Y. margin is
N .
maximized normal (weight) vector of the hyperplane

« Maximization of the margin
— If there are no points near the decision surface, then there are no
very uncertain classification decisions
— Also, a slight error in measurement or a slight document variation
will not cause a misclassification R Boriin Ghon 12



Formulation of SVM with Algebra (1/2)

Assume here that data points are linearly separable
Euclidean distance of a point to the decision boundary

1. The shortest distance between a point X to a hyperplane
is perpendicular to the plane, i.e., parallel tow

2. The point on the plane closest to X is X '

Xx'= X - yr M:
[ |
= WT()?—yr |vf|]+b:0
w
vy TR eb) TR+ b
= r = ~ or -
[ | [ |

3. We can scale y (vT/ TS+ b ) the so-called
“functional margin”, as we please; for example, to 1

: : : : : : : | Therefore, the margin defined by the support vectors
- f is expressed by 2

_.
[}
L3
=
|
[=p
1
oo

ol
(i.e., for support vectors yEW X + [9;: 1

; while for the others ¥y (W ' X + b )>1 )
IR — Berlin Chen 13

Assume data points are linear separable !



Formulation of SVM with Algebra (2/2)

« SVM is designed to find w and 5 that can maximize the
geometric margin
L w W )

2
— % (maximization of 7= is equivalent to minimization of 7
] ]
— Forall {%,y,}eD, yi(vT/T)?l. + b)z 1

Mathematical formulation (assume linear separability)

* Primal Problem
— Minimize L, with respectto wand b

min — "% subjectto v, (TE, +b)2 +1,V i @ |
.10 be minimized  ____To be maximized __ oL, 0= W=D a,yF
B S R ow —
L, ==Y aly, (575 +5)-1](e, 2 0) E2)
2 w G T oL, :
=—vT/TvT/—Zay(*Tx +b)+2a =
T ®
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Formulation of SVM with Algebra (3/3)
 Dual problem (plug @ and @ into @) )

— Maximize L , with respectto «,

A convex quadratic-optimization problem

———————————————————

INN ---- N

T EZZ%“JJ%T’@? + Zai

i=1 j=I i=1

N
Subject to the constraints that Z a,y,=0and a, =20 Vi
i=l
* Most @ ; are 0 and only a small number have o, > 0 (they are
support vectors)

« Have to do with the number of training instances, but not the input

dimension
IR — Berlin Chen 15



Dealing with Nonseparabillity (1/2)

« Datasets that are linearly separable (with some noise)
work out great:

« But what are we going to do if the dataset is just too hard?

—_————t——et— — — —
0 X

 How about mapping data to a higher-dimensional space?

IR — Berlin Chen 16



Dealing with Nonseparabillity (2/2)

« General idea: The original feature space can always be
mapped by a function ¢(-) to some higher-dimensional
feature space where the training set is separable

kernel trick X
o

o

@
° o ° | ® S °

® ® . o ®

. . R ° o °
® . . o ° ® o . o ®
o ® ) °
o
Purposes:

- Make non-separable problem separable
- Map data into better representational space IR — Berlin Chen 17



Kernel Trick (1/2)

» The SVM decision function for an input X at a high-
dimensional (the transformed ) space can be represented

as £(%)=sign (W p()+b)

N
=sign [ Y a,y,0(%) p(¥)+ bj
i=1

= sign Z o,y K(%, %)+ bj

— Akernel function K(¥,,X) is introduced, defined by the inner (dot)
product of points (vectors) in the high-dimensional space

. K(%.,X%) can be computed simply and efficiently in terms of
the original data points

- We wouldn’t have to actually map from ¥ — ¢ (%)
(however, we still can directly compute K (3,,%)= (%, ) ¢(3))

IR — Berlin Chen 18



Kernel Trick (2/2)

« Common Kernel Functions
— Polynomials of degree q: K(ﬁj): (ﬁT§+1)"
» Polynomial of degree two (quadratic kernel)

K(ﬁ, ‘7) = (7/7T‘7 + 1)2 two-dimensional points
— (”1"1 +u,v, +1)2 (Where u' = [ul,u2],L7T = [vl,v2 ])

. 2.2 2.2

¢(ﬁ) = [19 \/5”19 ﬁuz,ﬁuluz,uf,ufr
— Radial-basis function (Gaussian distribution): K (i, ) = o @77/bs*)
— Sigmoidal function: K(i,7)= tanH2ii"v +1)

The above kernels are not always very useful in text classification !

IR — Berlin Chen 19



Soft-Margin Hyperplane (1/2)

« Even for very high-dimensional problems, data points
could be linearly inseparable
« We can instead look for the hyperplane that incurs the

least error
— Define slack variables &> 0 that store the variation from the

margin for each data points

B ) - Reformulation the optimization criterion
with slack variables

-Find x, p, and & >0 such that

o 1 o . .

< For all {)_":i’yi}e D’yi(v_‘}T)_éi +b)21_§i

va+ci;i—iai[yi(wai+b)—1+g] Z,ué’

IR - Berlln Chen 20



Soft-Margin Hyperplane (2/2)

— Dual Problem

><l
><l

(=1
N
subject to Zaiyi:O and 0 <, <C Vi

i=1
 Neither slack variables &, nor their Lagrange multipliers &2, appear
in the dual problem!
« Again, x with non-zero o ; will be support vectors

« Solution to the dual problem is:

X
W = Z, a,y,X,
i=1
- T —
b=y, (1-&)-w"%, for k =arg max , a,

— Parameter C can be viewed as a way to control overfitting — a

regularization term
« The larger the value C , the more we should pay attention to each individual
data point

« The smaller the value C , the more we can model the bulk of the data
IR — Berlin Chen 21



Using SVM for Ad-Hoc Retrieval (1/2)

* For example, documents are simply represented by two-
dimensional vectors v (d,,4) consisting of cosine score
and term proximity

WO.Oﬁ
S
o R R
@ R R N-
S R -
») -
u -
N N
0.025 R
R .-~~~ R
.”“ N
| B N N
N N
N N
0
2 3 4 5

Term proximity

P Figure 15.7 A collection of training examples. Each R denotes a training example
labeled relevant, while each N is a training example labeled nonrelevant.
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Using SVM for Ad-Hoc Retrieval (2/2)

Examples: Nallapati, Discriminative Models for Information

Retrieval,

SIGIR 2004

— Basic Features used in SVM

Feature

Feature

2| X

L log(1 +

1 qug(gm[) log(c(q:, D))

c(qi, D)
—iBr )

3 Zq;EQmD log(idf(q:))

5|y,
6| S

log(1 +

@
4 Zq.ngmD(lOg(L:(L_,'g)))

c C
log(1 + <4 )C(Li,'(;))

L((‘IID‘D) @df(%))

— Compared with LM and ME (maximum entropy) models

Train | Test — Disks 1-2 Disk 3 Disks 4-5 WT2G
(151-200) (101-150) (401-450) (426-450)
Disks 1-2 | LM (p* =1900) | 0.2561 (6.75¢-3) | 0.1842 0.2377 (0.80) 0.2665 (0.61)
(101-150) | SVM 0.2145 0.1877(0.3) 0.2356 0.2598
ME 0.1513 0.1240 0.1803 0.1815
Disk 3 LM (u* =500) 0.2605 (1.08¢-4) | 0.1785(0.11) 0.2503 (0.21) 0.2666
(51-100) SVM 0.2064 0.1728 0.2432 0.2750 (0.55)
ME 0.1599 0.1221 0.1719 0.1706
Disks 4-5 | LM (p* = 450) 0.2592 (1.75e-4) | 0.1773 (7.9¢-3) | 0.2516 (0.036) 0.2656
(301-350) | SVM 0.2078 0.1646 0.2355 0.2675 (0.89)
ME 0.1413 0.0978 0.1403 0.1355
WT2G LM (" =2400) | 0.2524 (4.6e-3) 0.1838 (0.08) 0.2335 0.2639
(401-425) | SVM 0.2199 0.1744 0.2487 (0.046) 0.2798 (0.037)
ME 0.1353 0.0969 0.1441 0.1432
Best TREC runs 0.4226 N/A 0.3207 N/A
(Site) (UMass) (Queen’s College)

Tested on 4
TREC collections
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Ranking SVM (1/2)

« Construct an SVM that not only considers the relevance
of documents to the a training query but also the order of
each document pair on the ideal ranked list

— First, construct a vector of features v (d.,4) for each document-
query pair
— Second, capture the relationship between each document pair

by introducing a new vector representation ¢(dl.,dj ,q ) for each
document pair

¢(di’dj9q):l//(di’q)_w(dj’q)
— Third, if 4, is more relevant than 4, given ¢ (denoted d, <4,

i.e., d, should precede @, on the ranked list), then associate they
with the labely,, = +1 ;otherwise, y, = -1

Cf. T. Joachims and F. Radlinski, Search Engines that Learn from Implicit Feedback,
IEEE Trans. on Computer 40(8), pp. 34-40, 2007 R — Berlin Chen 24



Ranking SVM (2/2)

« Therefore, the above ranking task is formulated as:
— Find X , b, and ¢,,20such that
wiw+C) & is minimized

i,j,q

1
2
- Forall ¥(d,.d,.q):d, <d,}, wi¢ld.d, q)+b21-¢,,,
(Note that y, are left out here. Why?)
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