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Discriminatively-Trained Language Models (1/9)  y g g ( )

• A simple document-based language model (LM) for 
i f ti t i l b t d binformation retrieval can be represented by

( ) ( ) ( )[ ]is 21∏ +=
N

nn CorpusqPmDqPmRDQP

– The use of general corpus  LM                           is for probability 
smoothing and better retrieval performance
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( )CorpusqP n

smoothing and better retrieval performance
– Conventionally, the mixture weights                                    are 

empirically tuned or optimized by using the Expectation-
M i i ti (EM) l ith

( )1  , 1121 =+ mmmm

Maximization (EM) algorithm
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A mixture of N
probability distributions 
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‐D.R.H. Miller et al., “A hidden Markov model information retrieval system, SIGIR 1999.
‐ Berlin Chen et al., "An HMM/N‐gram‐based Linguistic Processing Approach for Mandarin Spoken Document Retrieval," Interspeech 2001 



Discriminatively-Trained Language Models (2/9)y g g ( )

• For those documents with training queries, m1 and m2
b ti t d b i th Mi i Cl ifi tican be estimated by using the Minimum Classification 

Error (MCE) training algorithm
The ordering of relevant documents and irrelevant documents*D D′– The ordering of relevant documents     and irrelevant documents     
in the ranked list for a training query exemplar     is adjusted to 
preserve the relationships            ; i.e.,       should precede       on 
the ranked list

D D
Q

'* DD p *D D′
the ranked list

• A learning-to-rank algorithm
– Documents thus can have different weightsDocuments thus can have different weights

‐ Berlin Chen et al., “A discriminative HMM/N‐gram‐based retrieval approach for Mandarin spoken documents,” 
ACM Transactions on Asian Language Information Processing 3(2), June 2004.
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Discriminatively-Trained Language Models (3/9)y g g ( )
• Minimum Classification Error (MCE) Training

– Given a query and a desired relevant doc define the Q *D– Given a query        and a desired relevant doc         , define the 
classification error function as: 

Q D

( ) ( )[ ]1 ( ) ( )[ ]RDQPRDQP
Q

DQE
D

not  is 'logmaxislog1),(
 '

** +−=

Also can take all irrelevant doc 
in the answer set into consideration

“>0”: means misclassified; “<=0”: means a correct decision

in the answer set into consideration

– Transform the error function to the loss function

1)( *DQL
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• In the range between 0 and 1
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DQE
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β

IR – Berlin Chen 4

In the range between 0 and 1 
– : controls the slope
– : controls the offset

),( *DQEα
β



Discriminatively-Trained Language Models (4/9)y g g ( )
• Minimum Classification Error (MCE) Training

Apply the loss function to the MCE procedure for iteratively– Apply the loss function to the MCE procedure for iteratively 
updating the weighting parameters

• Constraints:

loss
function 

• Parameter Transformation (e g Type I HMM)

1   , 0 =≥ ∑
k

kk mm

Parameter Transformation, (e.g.,Type I HMM)

and
21

1

~~

~

1 mm

m

ee
em
+

=
21

2

~~

~

2 mm

m

ee
em
+

=

( )im~( )1~ +im

– Iteratively update         (e.g., Type I HMM)1m
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Discriminatively-Trained Language Models (5/9)y g g ( )

• Minimum Classification Error (MCE) Training
It ti l d t ( T I HMM)– Iteratively update         (e.g., Type I HMM)
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Discriminatively-Trained Language Models (6/9)y g g ( )
• Minimum Classification Error (MCE) Training

Iteratively update m– Iteratively update
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Discriminatively-Trained Language Models (7/9)y g g ( )

• Minimum Classification Error (MCE) Training
Fi l E ti– Final Equations

• Iteratively update 1m
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Discriminatively-Trained Language Models (8/9)y g g ( )

• Experimental results with MCE training
Word-level Syllable-level Average Precision

Uni  Uni+Bi* 
Fusion 

TQ/TD 0.6459 
(0 6327)

0.6858 
(0 5718)

0.7329  Iterations=100Before (0.6327) (0.5718)  
TDT2 

 
TQ/SD 0.5810 

(0.5658) 
0.6300 

(0.5307) 
0.6914 

 

MCE Training

 

TQ/TD TQ/TD

TQ/SD

TQ/SD

– The results for the syllable-level indexing features were
MCE Iterations (Word-based) MCE Iterations (syllable-based)

IR – Berlin Chen 9IR – Berlin Chen 9

– The results for the syllable-level indexing features were 
significantly improved



Discriminatively-Trained Language Models (9/9)

• Similar treatments have been recently applied to 
D t T i M d l ( PLSA) d W d T i

y g g ( )

Document Topic Models (e.g., PLSA) and Word Topic 
Models (WTM) with good success

• For example, the ranking formula for PLSA can be 
represented byrepresented by
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The weighting parameters and document topic distributions
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α β– The weighting parameters    and     document topic distributions
can be trained by the MCE algorithm                                   

α β
( )DTP k
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Vector Representations
• Data points (e.g., documents) of different classes (e.g., 

relevant/non-relevant classes) are represented as ) p
vectors in a n-dimensional vector space 
– Each dimension has to do with a specific feature, whose value 

usually is normalized
decision hyperplane of a 

two-class problem bxw +
rr T

( ) ( )bxwxf +=
rrr Tsign

{ }Niii yx 1, ==
rDdecision function

• Support vector machines (SVM)

data point class label
(e.g., +1, -1)

– Look for a decision surface (or hyperplane) that is maximally far 
away from any data point

– Margin: the distance from the decision surface to the closest– Margin: the distance from the decision surface to the closest 
data points on either side (or the support vectors)

– SVM is a kind of large-margin classifier IR – Berlin Chen 11



Support Vectors
• SVM is fully specified by a small subset of the data (i.e., 

the support vectors) that defines the position of thethe support vectors) that defines the position of the 
separator (the decision hyperplane)

The support vectors are 5 points right
up against the margin of the classifier

Intercept term

M i i ti f th i
normal (weight) vector of the hyperplane

bxw +
rr T

• Maximization of the margin
– If there are no points near the decision surface, then there are no 

very uncertain classification decisionsvery uncertain classification decisions
– Also, a slight error in measurement or a slight document variation 

will not cause a misclassification IR – Berlin Chen 12



Formulation of SVM with Algebra (1/2)g ( )

• Assume here that data points are linearly separable
• Euclidean distance of a point to the decision boundary

1. The shortest distance between a point      to a hyperplane 
is perpendicular to the plane, i.e., parallel to 

xr
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bxw +
rr T 2. The point on the plane closest to     is    xr x ′r

w
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3. We can scale                            , the so-called 
“functional margin” as we please; for example to 1

( )bxwy +
rr T

functional margin , as we please; for example, to 1 

Therefore, the margin defined by the support vectors
is expressed by

r
2
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(i.e., for support vectors                
; while for the others                                    )  

wr

( ) 1T =+ bxwy rr

( ) 1T ≥+ bxwy rr

Assume data points are linear separable !



Formulation of SVM with Algebra (2/2)g ( )

• SVM is designed to find      and     that can maximize the 
t i i

bwr
geometric margin

– (maximization of        is equivalent to minimization of                )
wr
2

wr
2 ww rr T

2
1

– For all                   ,
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Mathematical formulation (assume linear separability)
• Primal Problem

– Minimize        with respect to      and  
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Formulation of SVM with Algebra (3/3)g ( )
• Dual problem (plug     and     into      )

– Maximize with respect to
2 3 1

iαdLMaximize        with respect to iαdL
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• Most         are 0 and only a small number have                  (they are 
support vectors)
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• Have to do with the number of training instances, but not the input 
dimension
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Dealing with Nonseparability (1/2) g y ( )

• Datasets that are linearly separable (with some noise) 
k t twork out great:

•0 •x

• But what are we going to do if the dataset is just too hard? 

0

•0 •x

• How about mapping data to a higher-dimensional space?
•x2

IR – Berlin Chen 16

•0 •x



Dealing with Nonseparability (2/2) g y ( )

• General idea: The original feature space can always be 
d b f ti t hi h di i l( )mapped by a function         to some higher-dimensional 

feature space where the training set is separable
( )⋅ϕ

kernel trick

( )

kernel trick

( )xx rr ϕ→Φ :

IR – Berlin Chen 17

Purposes: 
- Make non-separable problem separable
- Map data into better representational space



Kernel Trick (1/2)( )

• The SVM decision function for an input      at a high-
di i l (th t f d ) b t d

xr
dimensional (the transformed ) space can be represented 
as ( ) ( )( )+= bxwxf rrr sign Tϕ
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A kernel function is introduced defined by the inner (dot)
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( )xxK rr
– A kernel function is introduced, defined by the inner (dot) 

product of points (vectors) in the high-dimensional space
• can be computed simply and efficiently in terms of ( )xxK i

rr ,

( )xxK i ,

the original data points
• We wouldn’t have to actually map from

(however we still can directly compute )
( )xx rr ϕ→

( ) ( ) ( )K T rrrr(however, we still can directly compute                                  )
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( ) ( ) ( )xxxxK ii ϕϕ=,



Kernel Trick (2/2)( )
• Common Kernel Functions

Polynomials of degree q: ( ) ( )qvuvuK 1T +
rrrr– Polynomials of degree q:

• Polynomial of degree two (quadratic kernel) 
( ) ( )vuvuK 1, +=

( ) ( )K 2T 1rrrr( ) ( )
( ) [ ] [ ]( )vvuuuuvuvu

vuvuK

2222
21

T
21

T2
2211

T

,,,  where   1

1,

==++=

+=
rr

rrrr
two-dimensional points

( ) [ ]Tuuuuuuu

vuvuvvuuvuvu
2
2

2
12121

2
2

2
2

2
1

2
121212211

,,2,2,2,1

2221

=

+++++=
rφ

– Radial-basis function (Gaussian distribution): ( ) ( ) ( )22 2, σvuevuK
rrrr −−=

– Sigmoidal function: ( ) ( )12tanh, T += vuvuK rrrr
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The above kernels are not always very useful in text classification !



Soft-Margin Hyperplane (1/2)g y ( )

• Even for very high-dimensional problems, data points 
ld b li l i blcould be linearly inseparable

• We can instead look for the hyperplane that incurs the 
least errorleast error
– Define slack variables          that store the variation from the 

margin for each data points
0≥iξ

g p

- Reformulation the optimization criterion
with slack variables
- Find      ,      , and           such that

is minimum
xr b 0≥iξ
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Soft-Margin Hyperplane (2/2)g y ( )
– Dual Problem
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• Neither slack variables nor their Lagrange multipliers      appear 
in the dual problem!
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• Again, with non-zero will be support vectors
• Solution to the dual problem is:
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– Parameter can be viewed as a way to control overfitting – a 
regularization term

• The larger the value      , the more we should pay attention to each individual 

C

Cg , p y
data point

• The smaller the value      , the more we  can model the bulk of the data
IR – Berlin Chen 21
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Using SVM for Ad-Hoc Retrieval (1/2)g ( )

• For example, documents are simply represented by two-
di i l t i ti f i( )dimensional vectors              consisting of cosine score 
and term proximity 

( )qd i ,ψ

IR – Berlin Chen 22



Using SVM for Ad-Hoc Retrieval (2/2)g ( )
• Examples: Nallapati, Discriminative Models for Information 

Retrieval, SIGIR 2004
B i F t d i SVM– Basic Features used in SVM

– Compared with LM and ME (maximum entropy) models
Tested on 4 
TREC ll tiTREC collections

IR – Berlin Chen 23



Ranking SVM (1/2)g ( )

• Construct an SVM that not only considers the relevance 
f d t t th t i i b t l th d fof documents to the a training query but also the order of 

each document pair on the ideal ranked list
First construct a vector of features for each document-( )qdψ– First, construct a vector of features                for each document-
query pair 

– Second, capture the relationship between each document pair 

( )qd i ,ψ

( )by introducing a new vector representation                  for each 
document pair

( )qdd ji ,,φ

( ) ( ) ( )qdqdqdd ψψφ =

– Third, if      is more relevant than      given       (denoted             , 

( ) ( ) ( )qdqdqdd jiji ,,,, ψψφ −=

id jd q
ji dd p

di.e.,     should precede     on the ranked list), then associate they 
with the label               ; otherwise,  

id jd
1+=ijqy 1−=ijqy
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Cf. T. Joachims and F. Radlinski, Search Engines that Learn from Implicit Feedback,
IEEE Trans. on Computer 40(8), pp. 34-40, 2007



Ranking SVM (2/2)g ( )

• Therefore, the above ranking task is formulated as:
r 0ξ– Find      ,      , and             such that

• is minimized
xr b 0≥ijqξ
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2
1 ξrr

• For all                                 ,

(Note that are left out here. Why?)
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