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Classification of IR Models Along Two Axes

« Matching Strategy

— Literal term matching

* E.g., Vector Space Model (VSM), Hidden Markov Model
(HMM), Language Model (LM)

— Concept matching

« E.g., Latent Semantic Analysis (LSA), Probabilistic Latent
Semantic Analysis (PLSA), Topical Mixture Model (TMM)

« Learning Capability
— Term weighting, query expansion, document expansion, etc
* E.g., Vector Space Model, Latent Semantic Indexing
 Most models are based on linear algebra operations
— Solid statistical foundations (optimization algorithms)

« E.g., Hidden Markov Model (HMM), Probabilistic Latent
Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA)

« Most models belong to the language modeling approach
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Two Perspectives for IR Models (cont.)

 Literal Term Matching vs. Concept Matching
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— There are usually many ways to express a given concept, so
literal terms in a user’s query may not match those of a relevant
document

O gt
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Latent Semantic Analysis (LSA)

« Also called Latent Semantic Indexing (LSI), Latent
Semantic Mapping (LSM), or Two-Mode Factor Analysis

— Three important claims made for LSA

* The semantic information can derived from a word-document
co-occurrence matrix

* The dimension reduction is an essential part of its derivation

 Words and documents can be represented as points in the
Euclidean space

Steyvers & Griffiths 2007. Probabilistic topic models. In T. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.),
Handbook of Latent Semantic Analysis. Hillsdale, NJ: Erlbaum.
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Latent Semantic Analysis: Schematic

« Dimension Reduction and Feature Extraction
- PCA feature space
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LSA: An Example

— Singular Value Decomposition (SVD) used for the word-
document matrix

* A least-squares method for dimension reduction

Term1l Term?2 Term 3 Term4
Query user interface
Document 1 | user interface HCI interaction
Document 2 HCI Interaction

Projection of a Vector x :

Y2

T

Vi Q. X
v = [lx|[cos 6, = ||x||W= o x

, where ||(p1 || =1
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LSA: Latent Structure Space

« Two alternative frameworks to circumvent vocabulary mismatch

Doc > terms —> structure model
U
doc expansion ﬂ
| .
: : latent semantic
iteral Ter'mﬁma’rchlng structure retrieval
query eﬁxpansion ﬁ

Query —> terms —> structure model

IR — Berlin Chen 8



© © N O wNh =

_
= O

—
>

LSA: Another Example (1/2)

Titles
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LSA: Another Example (2/2)

2-D Plot of Terms and Docs from Example
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FIG. 1. A two-dimensional plot of 12 Terms and 9 Documents from the sampe T set. Terms are represented by filled circles. Documents are shown
as open squares, and component terms are indicated parenthetically. The query (“human computer interaction”) is represented as a pseudo-document at
paint g, Axes are scaled for Document-Document or Term-Term comparisons. The dotted cone represents the region whose points are within a cosine of
9 from the query g . All documents about human-computer (cl—cS) are “near” the query (i.e.. within this cone), but none of the graph theory documents
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LSA: Theoretical Foundation

RowA ¢ R"
 Singular Value Decomposition (SVD) CS:NA 2 Rm

compositions
P d d, d, d,

Both U and V has orthonormal
column vectors

rxr rxn V'V o
VTV=I
r < min(m,n)
mxr K<r All2 > [|A 2
st Al = 1IAl

m n
2
- 2
”A”F - Z Z e
=l =l

kxk kxn
Docs and queries are represented in a
k-dimensional space. The quantities of
the axes can be properly weighted

mxn mxk according to the associated diagonal
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LSA: Theoretical Foundation

« “term-document” matrix A has to do with the co-occurrences
between terms (or units) and documents (or compositions)
— Contextual information for words in documents is discarded
« “bag-of-words” modeling

* Feature extraction for the entities 4;; of matrix A
1. Conventional tf-idf statistics

2. Or, a; ; :occurrence frequency weighted by negative entropy

occurrence count ——
B ffl.,j ( ) d B m
4G =71\ gh |dj|= 2/
d . ¥ i=1
J N A
negative normalized entropy ~ document length

normalized entropy of term i occurrence count of term |

~—, 1 n fi,j fi,j n +«— inthe collection
g =— ZE log , =2 fig
=1

logn ;=1\ 7 T; j=

V=0 =l |
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LSA: Theoretical Foundation

« Singular Value Decomposition (SVD)
— ATA is symmetric nxn matrix
* All eigenvalues [ ;are nonnegative real numbers

A 2A, 2.2 >0 ¥ zdiag(ﬂi,l,,...,ﬁ,n)

» All eigenvectors v; are orthonormal ( €R")

V=[pyv,.v,] viv, =1 (rv=1,)

J

- Define singular values: sigma o, =4, j=1..n

J

— As the square roots of the eigenvalues of A’A

— As the lengths of the vectors Av,, Av,, ...., Av,
or 4; , I=1,...5 o, = ”Avl ” ||Avl.||2 =v'A"Av, =v' Av = A
{Av,, Av,, ...., Av. }is an o, =|4v,| = |dv| =0,

_orthogonal basis of Col A =~ ...
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LSA: Theoretical Foundation

{Av,, Av,, ...., Av.} is an orthogonal basis of Col A
1> AV, r 9

Av, e Ay, = (Avl. )T Av, =viA"Av, =Av'v, =0
— Suppose that A (or ATA) hasrank r <n

/1122422....2ﬂ,r>0, ﬂ“r+1:ﬂ’r+2:"":inzo
— Define an orthonormal basis {u,, u,,...., u,} for Col A
1 1
Av ——Av =>ou, =Avy
Uis also an HAV H R ———— orthonormal matrix
orthonormal matrix — u :A'v V.V .
(mxr) [ “ F]Zr :--1---2----1]-- - Known in advance

« Extend to an orthonormal baS|s {u,, u,,..., u.} of Rm

[u1 Usy...U ]Z A[v1 Voo VoV ] |A| _ ZZ

= US = AV :>U2VT=AVV, T

Er Orx(nfr)
z xXn
o(m—/’)X)‘ 0(/n—r)><(n—r

= A=UzV" { ]Inxn ? |A|F—a +o,+..+0. ?
)
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LSA: Theoretical Foundation

. u. spans the
V; SRR the Multiplication Bl
row spaceof A — byAd row space of A" |

mxn
Col A = Row AT

U v’

Nul A X 0\
=1 uzv'=(U, U,) ! :
AX =0 v )[ 0 OIVJJ
. . = U121V1T
FIGURE4 The four fundamental subspaces and the action r
- =AVW UX=AV
of A.
=A
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LSA: Theoretical Foundation

« Additional Explanations

— Eachrow of U is related to the projection of a corresponding
row of A4 onto the basis formed by columns of V

A=Uxpv?!
=S AV =USVIV =UL = US=AV

 the i-th entry of arow of U is related to the projection of a
corresponding row of 4 onto the i-th column of

— Each row of V' is related to the projection of a corresponding
row of 47 onto the basis formed by U
A=Uzv"
= AU =(Usr"f U =vsuTU =1z
=>V=A4"U

 the j-th entry of arow of V' s related to the projection of a
corresponding row of 4’ onto the i-th column of U

IR — Berlin Chen 16



LSA: Theoretical Foundation

 Fundamental comparisons based on SVD
— The original word-document matrix (A)

d, d d « compare two terms — dot product of two rows of A
— or anentry in AAT

« compare two docs — dot product of two columns of A
— oranentryin ATA

« compare a term and a doc — each individual entry of A

mxn

— The new word-document matrix (A’)
U e

mxk

2'=3 At M R it |
V=V, — dot product of two rows of U’ X R ™ For stretching

Fo A or shrinking

« compare two docs - A=(U' SVTT(U S VT 2V ST
— dot product of two rows of V' X'
« compare a query word and a doc — each individual entry of A’

IR — Berlin Chen 17




LSA: Theoretical Foundation

+ Fold-in: find representations for pesudo-docs q

— For objects (new queries or docs) that did not appear in the
original analysis

« Fold-in a new mx1 query (or doc) vector
See Figure A in next page

> —_ T )‘ -1 The separate dimensions
Dixk = (q Xm U mxk 2 kxk  are differentially weighted

Just like a row of V Query represented by the weighted
sum of it constituent term vectors

— Represented as the weighted sum of its component word
(or term) vectors

— Cosine measure between the query and doc vectors in
the latent semantic space

Gz3d’
5> aiz‘

Sim (c},a?)z coine (qAZ,a?Z) =

\/

row vectors
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LSA: Theoretical Foundation

 Fold-in a new 1 xn term vector
~ 1 See Figure B below
ik = LixaVousxe 2 kxk

Ak Uk pyS A
mxn _ m x k kxk kxn
P
<Figure A>
P
m x (n+p) m x k kxk k x (n+p)
Mathematical representation of folding-in p documents.
A Uk Tk v
m xn _ m x k kxk kxn
<Figure B>
B B
(m+q) x n (m+q) < k k xk kxn
Mathematical representation of folding-in q terms.

IR — Berlin Chen 19



LSA: A Simple Evaluation

« Experimental results

— HMM is consistently better than VSM at all recall levels
— LSA is better than VSM at higher recall levels

--->--- VSM
0.9 — --% - HMM
—aA— | SI
-
K‘\\:ﬁ\
0.8 -
0.7 :{\@\
5 0.6 é\\
(72 g -1 N
S %
e *\
(a8 ~\A/\
0.5 - e
9
[aSy
s
0.4 4 \
r A
b
0.3 I I I | I |
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Recall-Precision curve at 11 standard recall levels evaluated on
TDT-3 SD collection. (Using word-level indexing terms)
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LSA: Pro and Con (1/2)

* Pro (Advantages)

— A clean formal framework and a clearly defined optimization
criterion (least-squares)

« Conceptual simplicity and clarity

— Handle synonymy problems (“heterogeneous vocabulary”)

» Replace individual terms as the descriptors of documents by
independent “artificial concepts” that can specified by any
one of several terms (or documents) or combinations

— Good results for high-recall search
 Take term co-occurrence into account

IR — Berlin Chen 21



LSA: Pro and Con (2/2)

« Disadvantages
— High computational complexity (e.g., SVD decomposition)

— Exhaustive comparison of a query against all stored documents
is needed (cannot make use of inverted files ?)

— LSA offers only a partial solution to polysemy (e.g. bank, bass,...)

« Every term is represented as just one point in the latent
space (represented as weighted average of different
meanings of a term)

IR — Berlin Chen 22



LSA: Junk E-mall Filtering

One vector represents the centriod of all e-mails that are
of interest to the user, while the other the centriod of all

e-mails that are not of interest
|4 U S vT

w1 :"' """"""""

et et ity L ?
e Ll é 22

G

[7-00 I P R N [ T T
Bl ] = [ i 2
e
Bt et szizzziflegitimate A W unsolicited
N A — TIIIIIIII] email email
caaa)iiiil et (unscaled)
L2207 inkelelek ikalaleh (Mx2)LLo2nmm= (M x2) semantic anchors
legitimate / \ unsolicited
email email
observed counts
W U S VT
Wil F R
ettt =oo%¢ IR 5] 0
INRON I o] 0 32
- K ] T T T
E I N = = CCCTooTt V1 v2 V3
z INON NN CCCTooTt
I N CCCTooTt JJ \
AN IO JCIIIIIII (unscaled) (unscaled)
wyy IR N = 212777771 semantic anchors representation

for new email

A

new email

d, IR — Berlin Chen 23



LSA: Dynamic Language Model Adaptation
(1/4)
* Let w, denote the word about to be predicted, and
H,., the admissible LSA history (context) for this

particular word
— The vector representation of H, is expressed by Eq_l

* Which can be then projected into the latent semantic

space
~ ~ 5T .
A representation Vg—1 = Vg1 = d g U [change of notation : S = X|

+ lteratively update d, , and V,_; as the decoding

evolves _ pn_ -1~ 1—&
_ 49 I T
VSM representation dq — dq—l + [010]
n n
_ q . lq
LSA representation Vq = qu = dq—lU = —[(n —l)vq 1 -I—(l &; )M

with

1 fffffff : |
or ﬂ (n — 1) L+ (1-¢ )u; exponential
n, - decay
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LSA: Dynamic Language Model Adaptation
(2/4)
* Integration of LSA with N-grams

Pr(w, | H"{")=Pr(w, |H"),H)

where H _; denotes some suitable history for word w,,

and the superscripts " and ") refer to the n - gram

component (w,_w with n > 1), the LSA

q—2- “Wq—n+1 ’
component (c7 g-1)
This expression can be rewritten as :
Pr(w,,H\ | H")
I
Pr(wl.,bff])1 |H§1’1{

w; el

Pr(w, |H"{") =

IR — Berlin Chen 25



LSA: Dynamic Language Model Adaptation
(3/4)

 Integration of LSA with N-grams (cont.)

[) n
PI’(W ,H( | H( %) = Assume the probability of the document
history given the current word is not affected

PI‘(W | H(}il) - Pr(H(Z | W, H(n)l) by the immediate context preceding it

) Pr(dq 1| Wy—1W. Wy n+1))

—PI’( ‘W q—2"'wq—n+1)°Pr(dq 1 |W )
PI’( |dq I)Pr(dq 1)

= PI’( ‘ Wa-1Wg-2 " Wy—n+l

=Pr Wy Wy—p " Wy
( ‘ q 2 q—n+l1 PI‘(Wq)
> Pr(w, | H"") =
Pr d
Py |y 1970} 41
Pr(w,)
Pr(w; [dy )

2 Pr(w; [wywy oWy
w;elV S e PI'(W,') IR — Berlin Chen 26



LSA: Dynamic Language Model Adaptation
(4/4)

Intuitively, Pr(w, | d ¢-1) reflects the "relevance" of word w,

to the admissible history, as observed through d g1

Pr(wq‘gq_l)
R K(wq,gq_l)

~ -1
=COS(uqSl/2,vq_1Sl/2)= q9°"q

As such, it will be highest for words whose meaning aligns most
closely with the semantic favric of d -1 (1.e., relevant” content" words),

and lowest for words which do not convey any particular

information about this fabric (e.g.," function" works like " the'").

IR — Berlin Chen 27



LSA: Cross-lingual Language Model
Adaptation (1/2)

« Assume that a document-aligned (instead of sentence-
alighed) Chinese-English bilingual corpus is provided

W U S V'
& \d)| - |d|= X X
djcdzc d;
Mx N M X R R XR R XN
SVD of a word-document matrix for CL-LSA.
w U S v’
2= 1x[ ] X
0(0]-|0
MxP M xR R xR R x P

Folding-in a monolingual corpus into LSA.

Lexical triggers and latent semantic analysis for cross-lingual language model adaptation, TALIP 2004, 3(2) IR — Berlin Chen 28



LSA: Cross-lingual Language Model
Adaptation (2/2)

« CL-LSA adapted Language Model

E d;" is a relevant English doc of the Mandarin df
PAdapt (Ck ‘ck—l ,Cl_2, di ) doc being transcribed, obtained by CL-IR

df )+ (1- 1) Pyg (Ck‘ck—l’ck—z)

dF )

x4 For-1sa -Unigram (Ck

diE ): > Pr (c|e)P(e
e
sim (¢, e )

> sim (¢, e )
~

PCL —LSA -Unigram (ck

PT(C|8)z (y>> 1)

IR — Berlin Chen 29



LSA: SVDLIBC

* Doug Rohde's SVD C Library version 1.3 is based
on the SVDPACKC library

 Download it at http://tedlab.mit.edu/~dr/
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LSA: Exercise (1/4)

Row Col. Nonzero

« Given a sparse term-document matrix #rem #Doc entries

— E.g., 4 terms and 3 docs 4 ‘3 5 nonzero entries
Doc 2 < at Col 0
PN 023 Col 0, Row 0
/ N 7 38 Col 0, Row 2
~ 23 0.0 4.2 1 < 1 nonzero entry
) at Col 1
Term < 00 13 22 > 11.3 Col 1, Row 1
138 00 05 3 < 3 nonzero entry
at Col 2
0.0 0.0 0.0 0 42 Gol2, Row0
" 1 2.2 Col 2, Row 1
— Each entry can be weighted by TFxIDF score 2 0.5 Col 2, Row 2

* Perform SVD to obtain term and document vectors
represented in the latent semantic space

« Evaluate the information retrieval capability of the LSA
approach by using varying sizes (e.g., 100, 200,...,600
etc.) of LSA dimensionality

IR — Berlin Chen 31



LSA: Exercise (2/4)

« Example: term-document matrix

Indexing Nonzero
Term no. “°¢ "% antries
51253 2265 218852

77

508 7.725771
596 16.213399
612 13.080868
709 7.725771
713 7.725771
744 7.725771
1190 7.725771
1200 16.213399
1259 7.725771

""" tout LSA100-Ut
« SVD command (IR_svd.bat) oS

svd -rst -0 LSA100 -d 10»0 Term-Doc-Matrix
//, N v LSA100-Vt

No. of reserved name of sparse
eigenvectors matrix input IR — Berlin Chen 32

LSA100-S

-

sparse matrix input prefix of output files



LSA: Exercise (3/4)

« LSA100-Ut
51253 words

100 51253 A
10.00310.001 ........

0.002|0.002 .......

word vector (uT): 1x100 e LSA100-Vt
. LSA100-S 100 2265 o

100 0.021|0.035 ........
2686.18 0.012/0.022 .......

829.941
=

100 eigenvalues

doc vector (vT): 1x100 IR — Berlin Chen 33




LSA: Exercise (4/4)

* Fold-in a new mx1 query vector

The separate dimensions

A . T
dixk = (q U m X k Z k x k are differentially weighted

Just like a row of V Query represented by the weighted
sum of it constituent term vectors

« Cosine measure between the query and doc vectors in
the latent semantic space

Gz3d’

sim (qA,a?): coine (¢%,dY) =

IR — Berlin Chen 34



