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Statistical Language Models (1/2)

« A probabilistic mechanism for “generating” a piece of text
— Defines a distribution over all possible word sequences

W =ww,...wy

P(W)="?

* Whatis LM Used for ?

— Speech recognition

— Spelling correction

— Handwriting recognition

— Optical character recognition

— Machine translation

— Document classification and routing
— Information retrieval ...
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Statistical Language Models (2/2)

« (Statistical) language models (LM) have been widely
used for speech recognition and language (machine)
translation for more than twenty years

« However, their use for use for information retrieval
started only in 1998 [Ponte and Croft, SIGIR 1998]
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Query Likelihood Language Models

 Documents are ranked based on Bayes (decision) rule
p(o|p)P(D)
P(Q)

— P(Q) is the same for all documents, and can be ignored

P(D|0)=

— P(D) might have to do with authority, length, genre, etc.
* There is no general way to estimate it
» Can be treated as uniform across all documents

« Documents can therefore be ranked based on

P(Q‘D) (or denoted as P(Q‘MD ))
— The user has a prototype (ideal) document in mind, and
generates a query based on words that appear in this document

— Adocument p istreated as a model M , to predict (generate)
the query
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n-grams

« Multiplication (Chain) rule

P(wlwz....wN ) = P(wl )P(w2 ‘wl )P(w3 ‘wlwz ) P(WN ‘wlwz wN_l)

— Decompose the probability of a sequence of events into the
probability of each successive events conditioned on earlier events

e n-gram assumption
— Unigram
P(wywy...wy )= P(wy) P(wy )P(w3)-+ P(wy )
« Each word occurs independently of the other words

» The so-called “bag-of-words™ model
— Bigram
P(wywy.owy )= P(wy ) P(wy|wy )P(ws|wy )+ Pwy |wy )
— Most language-modeling work in IR has used unigram language

models
* IR does not directly depend on the structure of sentences
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Unigram Model (1/4)

* The likelihood of a query 0 =w,w,...wy given a
document D

P(OM p )= P(wM 5 ) P(wo[M p ) P(wy[Mp)
:Hi]\ilp(wi‘MD)

— Words are conditionally independent of each other given the
document

— How to estimate the probability of a (query) word given the
document P(WMp) ?

 Assume that words follow a multinomial distribution

given the document permutation is considered here
v
(C(Wl)» »C(WV)(MD) (ZJ IC( )) H, 1A SV(W)

[T (COw ) )

where  C(w; ):the number of times a word occurs
ﬁ“wi = P(Wi‘MD)’ ZZI'/zl/lwi =1
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Unigram Model (2/4)

« Use each document itself a sample for estimating its
corresponding unigram (multinomial) model
— |If Maximum Likelihood Estimation (MLE) is adopted

— ~ N
. Doc O

C(WiaD)

P(Wi‘MD): ‘D

where

C(w;, D):number of times w; occursin D
‘D‘ :lengthof D, >, C(wl- , D) = ‘D‘

The zero-probability problem
If w, and v, do not occurin D
then P(w, |Mp)= P(.|Mp)=0

This will cause a problem in predicting
the query likelihood (See the equation for

the query likelihood in the preceding slide)
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Unigram Model (3/4)

* Smooth the document-specific unigram model with a
collection model (a mixture of two multinomials)

P(Q‘MD):Hi]\il[/%'P(Wi‘MD)JF (l—ﬂ«)'P(Wi‘MC)]

« The role of the collection unigram model P(w;[M )
— Help to solve zero-probability problem

— Help to differentiate the contributions of different missing terms in
a document (global information like IDF ?)

* The collection unigram model can be estimated in a
similar way as what we do for the document-specific
unigram model
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Unigram Model (4/4)

* An evaluation on the Topic Detection and Tracking (TDT)
corpra
— Language Model

mAP Unigram Unigram+Bigram
TQ/TD 0.6327 0.5427
TDT2 |TQ/SD 0.5658 0.4803
TQ/TD 0.6569 0.6141
TDT3 |TQ/SD 0.6308 0.5808

— Vector Space Model

mAP Unigram Unigram+Bigram
TQ/TD 0.5548 0.5623
TDT2 | TQ/SD 0.5122 0.5225
TQ/TD 0.6505 0.6531
TDT3| TQ/SD 0.6216 0.6233

Funigram (Q M D)
:Hi]il[ﬁ“'P(Wi‘MD)—i' (1_/1)'P(Wi‘MC)]

PUnigram + Bigram (Q‘MD)
= 1Y% [/11 'P(Wi|MD )+ Ay 'P(Wi|MC)
A3 'P(Wi‘wi—lsMD )+
(1-2 -4, —/13)'P(Wi‘wi—1»MC)]
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Maximum Mutual Information

« Documents can be ranked based their mutual information
with the query

P(0.D)
P(Q)P(D)
=log P(0|D)- log P(0)

being the same for all documents,
and hence can be ignored

MI(Q,D)= log

« Document ranking by mutual information (Ml) is equivalent
that by likelihood

arg max M/ (Q,D): arg max P(Q‘D)
D D
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Probabilistic Latent Semantic Analysis (PLSA)

Thomas Hofmann 1999
* Also called The Aspect Model, Probabilistic Latent
Semantic Indexing (PLSI)

— Graphical Model Representation (a kind of Bayesian Networks)
(0|p)P(D)
P(Q)

Language model

sim(0, D)= P(D|0)="—

P(D) P(w|D) « P(0|D)P(D)
— (o) v

A S HQ[/I-P(W\MD)+(1—ﬂ)-P(w\MC)]C(W’Q)

sin(0.0)= P(0|p)= 1 P(u|p ¥

P(D) ) (w|ry ) ¢ C(w.0)
s  nfErene]©
| | weQ | k=1

T -1 [ > P(wT, )P(Tk|D)T(W’Q)

weQ k=1

=>The unobservable class variables T,

Reference:
1. T. Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning, January-February 2001 IR — Berlin Chen 13



PLSA: Formulation

* Definition
— P(D) : the prob. when selecting a doc D

_P(1; D ): the prob. when pick a latent class I, for the doc D

—P(W|Tk ): the prob. when generating a word W from the class 1,
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PLSA: Assumptions

« Bag-of-words: treat docs as memoryless source, words

are generated independently

sim(0,D)= P(0|D)=11 P(w|D ) <)

 Conditional independent: the doc D and word W are
independent conditioned on the state of the associated

latent variable T,

P, DIT, )= POT PO, )

P(W‘D): kg_IP(W,Tk‘D): §P(W’D’Tk)— < P(W?D‘Tk)P(Tk)

------------------------- = 2Py P
g PGl PO R@) | £ PO R 0)
k=1 P(D)

K
= 2
k=1

P (w|r, )P (7, |D)

P (D)
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PLSA: Training (1/2)

* Probabilities are estimated by maximizing the collection
likelihood using the Expectation-Maximization (EM)
algorithm

Le =Y Y C(w,D)log P(w|D)
D w

w

= 23 €. D)log| T P(w|ry )P (1, |D)

EM tutorial:

- Jeff A. Bilmes "A Gentle Tutorial of the EM Algorithm and its Application
to Parameter Estimation for Gaussian Mixture and Hidden Markov Models," U.C. Berkeley TR-97-021
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PLSA: Training (2/2)

* E (expectation) step

P(wl|r, )P (T, |D)

P(@T,|w,D )= >7 PwT, )P (T, |D)

* M (Maximization) step

>p C(w,D)P(Ty|w,D)
>wXpCOw,D)P(Ti|w,D)

A s ¢ (w,D)P(T,|w,D
P(Tk‘Di): éwczfv,(g;} )

P(wlr, )=
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PLSA: Latent Probability Space (1/2)

RS e i e p e S e e 23 . . .
| o Dimensionality k=128 (latent classes)
___________________________________________ i : Aspect 1 Aspect 2 Aspect 3 Aspect 4
spanned 0 : 0
convex region # P(w,1d) 1mag video region speaker
. . L“Y_;_’M: SEGMENT | sequenc contour speech
\ . ot textur motion boundari recogni
- S 2 yirnx color frame deserip signal
\ sl e e tissu scene imag train
P(w, 1z,) e brain SEGMENT | SEGMENT hmm
P(w | i ' - slice shot precis SOUIC
(o izo) . PO ) cluster imag estim speakerindepend
0 . i cluster pixel SEGMENT
. algorithm visual paramet sound
medical imaging image sequence _
Sketch of the probability simplex and a convex region spanned by class-conditional probabilities in context of contour phone‘hc

the aspect model.

analysis

boundary detection segmentation
P(Wj‘TkﬂDi)P TkaDi)
P
T,)
\

) :diag (P(Tk ))k Vo (P(Di|Tk ))k
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P(Wj‘Tk)
/
U : (P(wj|Tk ))j’k

P(wj,Di)ng(w

/-

P(W ,D)

P(T, )P (D

]




PLSA: Latent Probability Space (2/2)

Ty
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aviation space missions  family love Hollywood love
Aspect 1 | Aspect 2 || Aspect 3 Aspect 4
plane space home film
airport shuttle family movie
crash mission like Mmusic
Hight astronauts love new
safety launch kids best
aircraft station mother hollywood
air crew life love
passenger nasa happy actor
board satellite friends | entertainment
airline earth cnn star

PLSA: One more example on TDT1 dataset

The 2 aspects to most likely generate the word “flight” (lett) and “love’ (right), derived froma K = 128

aspect model of the TDT1 document collection. The displayed terms are the most probable words in the class-
conditional distribution P(w; | z), from top to bottom in descending order.
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PLSA: Experiment Results (1/4)

« Experimental Results
— Two ways to smoothen empirical distribution with PLSA

« Combine the cosine score with that of the vector space
model (so does LSA)

PLSA-U* (See next slide)
« Combine the multinomials individually Pogsy (w1D)= & P(ui7, JP(7,|D)

PLSA-Q* L

____________________

D
PEmpirical (w|D) = %

Prust (@I D)= T (2 Prnpiricat¥| D)+ (1= 2) - Poyg4(w] D))
Both provide almost identical performance
- It's not known if PLSA was used alone
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PLSA: Experiment Results (2/4)

PLSA-U*

« Use the low-dimensional representation P(7, | Q) and P(T} | D)
(be viewed in a A-dimensional latent space) to evaluate
relevance by means of cosine measure

« Combine the cosine score with that of the vector space
model

« Use the ad hoc approach to re-weight the different model
components (dimensions) by

> C(w.0) AT |w.0)
S AIOPIID)  he g

Ry —U*(QaD) = \/ weQ

\Zk:P(TkQ)z \/Zk: P(T,|DY online folded-in

EPLSA—U* (Q,D)=41- RPLSA—U* (Q,D)+ (1 - l)' RVSM (Q,D)
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PLSA: Experiment Results (3/4)

> P(1¢Q)P(T,|D;)
* Why Rppsi—0+(Q,D;) = £ 2 ?
[ZPllof s pip,§

— Reminder that in LSA, the relations between any two docs can
be formulated as o Il =

ATA=(U'ZVOT' (U ZVT) =VETUTU Z'VT=(VEYV' X )T
sim (Dl,Ds)zcoine (ﬁiZ,ﬁsZ):

DE2D!
[o.p.]
— PLSA mimics LSA in similarity measure 5, and b, are row vectors

> P(D, |1, )P(1; )P(7; )P (D, Ty, )
Jz[P e )F (5[0 e )F

> P(T|D; )P,(Dl )P(1; D, )P(B, )

- Rl P F Sl 0, e, T

%P(Tk|Di)P(Tk|Ds)

Rprs ok (D;,Dy) =

P(Di‘Tk)P(Tk):P(Tk‘Di)P(Di)

- \/% P(Ty|D; f \/% P(T,|D, )
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precision [%]

precision [%)]

PLSA: Experiment Results (4/4)
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PLSA vs. LSA

« Decomposition/Approximation

— LSA: least-squares criterion measured on the L2- or Frobenius
norms of the word-doc matrices

— PLSA: maximization of the likelihoods functions based on the
cross entropy or Kullback-Leibler divergence between the
empirical distribution and the model

« Computational complexity
— LSA: SVD decomposition
— PLSA: EM training, is time-consuming for iterations ?

IR — Berlin Chen 25



