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Statistical Language Models (1/2)

• A probabilistic mechanism for “generating” a piece of text
– Defines a distribution over all possible word sequences

• What is LM Used for ?
– Speech recognition
– Spelling correction
– Handwriting recognition
– Optical character recognition
– Machine translation
– Document classification and routing
– Information retrieval …
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Statistical Language Models (2/2)

• (Statistical) language models (LM) have been widely 
used for speech recognition and language (machine) 
translation for more than twenty years

• However, their use for use for information retrieval 
started only in 1998 [Ponte and Croft, SIGIR 1998]
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Query Likelihood Language Models

• Documents are ranked based on Bayes (decision) rule

– is the same for all documents, and can be ignored 

– might have to do with authority, length, genre, etc.
• There is no general way to estimate it
• Can be treated as uniform across all documents

• Documents can therefore be ranked based on

– The user has a prototype (ideal) document in mind, and 
generates a query based on words that appear in this document

– A document         is treated as a model          to predict (generate) 
the query
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Schematic Depiction
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n-grams
• Multiplication (Chain) rule

– Decompose the probability of a sequence of events into the 
probability of each successive events conditioned on earlier events

• n-gram assumption
– Unigram

• Each word occurs independently of the other words
• The so-called “bag-of-words” model

– Bigram

– Most language-modeling work in IR has used unigram language 
models

• IR does not directly depend on the structure of sentences
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Unigram Model (1/4)

• The likelihood of a query                        given a 
document

– Words are conditionally independent of each other given the 
document

– How to estimate the probability of a (query) word given the 
document                     ?

• Assume that words follow a multinomial distribution
given the document
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Unigram Model (2/4)

• Use each document itself a sample for estimating its 
corresponding unigram (multinomial) model
– If Maximum Likelihood Estimation (MLE) is adopted
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The zero-probability problem
If we and wf do not occur in D
then P(we |MD)= P(wf |MD)=0

This will cause a problem in predicting 
the query likelihood (See the equation for 
the query likelihood in the preceding slide)
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Unigram Model (3/4)

• Smooth the document-specific unigram model with a 
collection model (a mixture of two multinomials)

• The role of the collection unigram model
– Help to solve zero-probability problem
– Help to differentiate the contributions of different missing terms in 

a document (global information like IDF ? )  

• The collection unigram model can be estimated in a 
similar way as what we do for the document-specific 
unigram model 
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Unigram Model (4/4)

• An evaluation on the Topic Detection and Tracking (TDT) 
corpra
– Language Model

– Vector Space Model 

mAP Unigram Unigram+Bigram 

TQ/TD 0.6327 0.5427  

TDT2 TQ/SD 0.5658 0.4803 

TQ/TD 0.6569 0.6141  

TDT3 TQ/SD 0.6308 0.5808 

mAP Unigram Unigram+Bigram

TQ/TD 0.5548 0.5623  

TDT2 TQ/SD 0.5122 0.5225 

TQ/TD 0.6505 0.6531  

TDT3 TQ/SD 0.6216 0.6233 
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Maximum Mutual Information

• Documents can be ranked based their mutual information 
with the query 

• Document ranking by mutual information (MI) is equivalent 
that by likelihood
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Probabilistic Latent Semantic Analysis (PLSA)

• Also called The Aspect Model, Probabilistic Latent 
Semantic Indexing (PLSI)
– Graphical Model Representation (a kind of Bayesian Networks)

Reference:
1. T. Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning, January-February 2001

Thomas Hofmann 1999
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PLSA: Formulation

• Definition
– : the prob. when selecting a doc

– : the prob. when pick a latent class         for the doc   

– : the prob. when generating a word        from the class
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PLSA: Assumptions
• Bag-of-words: treat docs as memoryless source, words 

are generated independently

• Conditional independent: the doc      and word       are 
independent conditioned on the state of the associated 
latent variable  
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PLSA: Training (1/2)

• Probabilities are estimated by maximizing the collection 
likelihood using the Expectation-Maximization (EM) 
algorithm

( ) ( )

( ) ( ) ( )∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
∑=

∑ ∑=

D w T
kk

D w
C

k

DTPTwPDwC

DwPDwCL

log,      

log,

EM tutorial:
- Jeff A. Bilmes "A Gentle Tutorial of the EM Algorithm and its Application 

to Parameter Estimation for Gaussian Mixture and Hidden Markov Models," U.C. Berkeley TR-97-021
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PLSA: Training (2/2)

• E (expectation) step

• M (Maximization) step
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PLSA: Latent Probability Space (1/2)

image sequence
analysis 

medical imaging
context of contour
boundary detection

phonetic 
segmentation
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PLSA: Latent Probability Space (2/2)
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PLSA: One more example on TDT1 dataset

aviation space missions family love Hollywood love
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PLSA: Experiment Results (1/4)

• Experimental Results 
– Two ways to smoothen empirical distribution with PLSA

• Combine the cosine score with that of the vector space 
model (so does LSA)
PLSA-U* (See next slide)

• Combine the multinomials individually 
PLSA-Q*

Both provide almost identical performance
– It’s not known if PLSA was used alone
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PLSA: Experiment Results (2/4)

PLSA-U*
• Use the low-dimensional representation                and  

(be viewed in a k-dimensional latent space) to evaluate 
relevance by means of cosine measure

• Combine the cosine score with that of the vector space 
model

• Use the ad hoc approach to re-weight the different model 
components (dimensions) by
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PLSA: Experiment Results (3/4)

• Why                                             ?

– Reminder that in LSA,  the relations between any two docs can 
be formulated as 

– PLSA mimics LSA in similarity measure
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PLSA: Experiment Results (4/4)
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PLSA vs. LSA

• Decomposition/Approximation
– LSA: least-squares criterion measured on the L2- or Frobenius

norms of the word-doc matrices
– PLSA: maximization of the likelihoods functions based on the 

cross entropy or Kullback-Leibler divergence between the 
empirical distribution and the model

• Computational complexity
– LSA: SVD decomposition
– PLSA: EM training, is time-consuming for iterations ?


