
Parsing with Context-Free Grammars

Berlin Chen

Department of Computer Science & Information Engineering
National Taiwan Normal University

References:
1. Natural Language Understanding, Chapter 3 (3.1~3.4, 3.6)
2. Speech and Language Processing (1st ed.), Chapters 9, 10; (3rd ed.), Chapter 17

Grammars and Sentence Structures (1/3)

• Describe the structure of sentences and explore ways of characterizing all
the legal structures in a language

• Parse tree: how a sentence is broken into its major subparts (constituents), and how
these subparts are broken up in turn

• E.g., John ate the cat

2

A set of rewrite rules describes
what tree structures are allowable.

[list notation]

Formal models for capturing more sophisticated notions of grammatical structure, and algorithms for parsing these structures will be introduced.

Rewrite
Rules

Grammars and Sentence Structures (2/3)

• A grammar is said to derive a sentence if there is a sequence of rules that
allow you to rewrite the start symbol S into the sentence

• A top-down derivation strategy starts with the S symbol and then
searches through different ways to rewrite the symbols until the input
sentence is generated

3

Grammars and Sentence Structures (3/3)

• In a bottom-up derivation strategy, you start with the words in the
sentence and use the rewrite rules backward to reduce the sequence of
symbols until it consists solely of S

• Ideal properties of a grammar: generality, selectivity, understandability
• generality, the range of sentences the grammar analyzes correctly; selectivity, the

range of non-sentences it identifies as problematic; and understandability, the
simplicity of the grammar itself 4

Recall: Context-Free Grammars (CFGs)

• Grammars consist entirely of rules with a single symbol on the left-hand side

• Formalized by Chomsky (1956), and Backus (1959)
• Also called Backus-Naur Form (BNF)

• Also called phrase-structure grammars

• A CFG defines a formal language

• The most commonly used mathematical system for modeling the constituent
structure in natural languages

• Ordering
• What are the rules that govern the ordering of words and bigger units in the language

• Constituency
• How do words group into units and what do we say about how the various kinds of units

behave
5https://en.wikipedia.org/wiki/Noam_Chomsky

Noam Chomsky

Major Characteristics of CFGs (1/4)

• CFG examples
• Consist of a set of rules (productions)

NP → Det Nominal
NP → ProperNoum
Nominal → Noun | Noun Nominal
Det → a
Det → the
Noun → flight

a nominal, in turn, can consist of one
or more Nouns.

mother

6

Generation:

So starting from the symbol: NP
we can use our first rule to rewrite NP as: Det Nominal
and then rewrite Nominal as: Noun
and finally rewrite these parts-of-speech as: a flight

When talking about these rules we can pronounce the right-arrow “→“ as “goes to”, and so we
might read the first rule above as “NP goes to Det Nominal”.

Rewrite the symbol on the left with
a string of symbols on the right.

Nominal

Major Characteristics of CFGs (2/4)

• Symbols used are divided into two classes: terminal and non-terminal
symbols

• A single non-terminal symbols on the left side of the arrow (→) while
one or more terminal or non-terminal symbols on the right side

• The terminal symbol is a word, while in the
lexicon, the non-terminal symbol associated
with each word is its lexical category, or
part-of-speech (POS)

• The non-terminal symbol can be a larger
constituent (e.g. a phrasal unit)
in addition to the lexical category

7

We can also represent a parse tree in a more compact format
called bracketed notation:

Major Characteristics of CFGs (3/4)

• The notion of context in CFGs has nothing to do with the ordinary meaning
of the word context in language

• All it really means that the non-terminal on the left-hand side of a rule is
out of there all by itself

A → B C

• We can rewrite an A as a B followed by a C regardless of the context in which A is
found

8

9

Major Characteristics of CFGs (4/4)

• Generation and Parsing: CFGs can be thought of as a device for
generating sentences or a device for assigning a structure to a given
sentence (i.e. parsing)

• Sentence generation
• Start from the S symbol, randomly choose and apply rewrite rules (or productions), until a

sequence of words is generated

• Parsing
• Identify the structure of a sentence given a grammar
• Top-down or bottom-up strategies

More Complex Derivations (1/3)

• S → NP VP
• Units S, NP, and VP are in the language
• S consists of an NP followed immediately by a VP
• There may be many kinds of S
• NPs and VPs can occur at other places (on the left sides) of the set of rules

• E.g.
NP → Det Nominal
NP → ProperNoum
VP → Verb NP
VP → Verb NP PP

10

More Complex Derivations (2/3)

[S [NP[Pro I]][VP[V prefer][NP[Det a][Nom [N morning][N flight]]]]]

Bracketed notation (List notation)

11

We can use the following grammar to
generate sentences of this “ATIS-language”.

More Complex Derivations (3/3)

• Recursion
• The non-terminal on the left also appears somewhere on the right (directly or

indirectly)
NP → NP PP [[The flight] [to Boston]]
VP → VP PP [[departed Miami] [at noon]]

• E.g.
• flights from Denver (NP ⇒ NP PP)
• Flights from Denver to Miami (NP PP ⇒ NP PP PP)
• Flights from Denver to Miami in February (NP PP PP ⇒ NP PP PP PP)
• Flights from Denver to Miami in February on Friday (NP PP PP PP ⇒ NP PP PP PP PP)

12

Formal Definition of Context-Free Grammar (1/3)

• A CFG G has four parameters (“4-tuple”)
1. A set of non-terminal symbols (or “variables”) 𝑁
2. A set of terminal symbols ∑ (disjoint from 𝑁)

3. A set of rules (productions) R, each of the form 𝐴 → 𝛽, where 𝐴 is a non-terminal
symbol and 𝛽 is a string of symbols from the infinite set of strings ሺ∑ ∪ 𝑁ሻ∗

4. A designated start symbol 𝑆 (or 𝑁ଵ)

• CFG is a generative grammar
• The language is defined by the set of possible sentences “generated” by the grammar
• The concept of “derivation”

• One string derives another one if it can be rewritten as the second one by some
series of rule applications

13

Formal Definition of Context-Free Grammar (2/3)

• Derivation: a sequence of rules applied to a string that accounts for that
string

• The whole process can be represented by a parse tree
• E.g. a parse tree for “a flight”

• But, usually languages are derivable from the
designated start symbol (𝑆)

• The “sentence” node
• The set of strings derivable from S called sentences

14

A derivation represented by
a parse tree

Formal Definition of Context-Free Grammar (3/3)

• Directly Derive

• Directly derive:

• Derive

• Syntactic parsing: the problem of mapping from a string of words to its
parse tree(s) is called syntactic parsing

15

𝐴 → 𝛽 𝛼𝐴𝛾 ⇒ 𝛼𝛽𝛾

𝛼ଵ ⇒ 𝛼ଶ, 𝛼ଶ ⇒ 𝛼ଷ, . . . , 𝛼௠ିଵ ⇒ 𝛼௠ ∴ 𝛼ଵ ⇒
∗

𝛼௠

where 𝛼, 𝛽, 𝑟, 𝛼௜ ∈ Σ ∪ 𝑁 , 𝑚 ൒ 1

𝐴 → 𝛽 is a production (rewrite) rule, where 𝛼 and 𝛾 are any strings inሺ∑ ∪ 𝑁ሻ∗

ሺ𝛼ଵ derives 𝛼௠)𝛼ଵ, 𝛼ଶ, … , 𝛼௠ are any strings inሺ∑ ∪ 𝑁ሻ∗

Treebanks

• A corpus in which every sentence is
annotated with a parse tree is called a
treebank

• Treebanks play an important role in parsing
as well as in linguistic investigations of
syntactic phenomena

• Treebanks are generally made by parsing
each sentence with a parse that is then
hand-corrected by human linguists

• The Penn Treebank project constructed
various treebanks in English, Arabic, and
Chinese

16

CFG: Conversion to Chomsky Normal Form (1/2)

• A context-free grammar is in Chomsky normal form (CNF) (Chomsky, 1963)
if it is ϵ-free and if in addition each production is either of the form

A → B C
or, A → a

• For CNF, the right-hand side of each rule either has two non-terminal
symbols or one terminal symbol

• Chomsky binary normal form grammars are binary branching, that is they
have binary trees (down branching to the prelexical nodes)

17

CFG: Conversion to Chomsky Normal Form (2/2)

• Any context-free grammar (CFG) can be converted into a weakly
equivalent Chomsky normal form (CNF) grammar

18

A → B C D A → B X
X → C D

Two grammars are weakly equivalent if they generate the same set of strings but do not
assign the same phrase structure to each sentence.

Ambiguity (1/2)
• Structural ambiguity (viz. assigning more than one parse to a sentence) is the

most serious problem faced by syntactic parsers
• Two common kinds of ambiguity are attachment ambiguity and coordination ambiguity
• A sentence has an attachment ambiguity if a particular constituent can be attached to the

parse tree at more than one place.

19

coordination ambiguity:

[old [men and women]]

[old men] and [women]

attachment ambiguity:

Ambiguity (2/2)

• Various kinds of adverbial phrases are also subject to the attachment
ambiguity, for example:

We saw the Eiffel Tower flying to Paris.

• The gerundive-VP flying to Paris can be part of a gerundive sentence whose subject
is the Eiffel Tower or it can be an adjunct modifying the VP headed by saw

20

Lexical Head

• Syntactic constituents can be associated with a lexical head
• For example, N is the head of an NP, V is the head of a VP

• In one simple model of lexical heads, each context-free rule is associated
with a head

• The head is the word in the phrase that is grammatically the most important
• Heads are passed up the parse tree; thus, each non-terminal in a parse tree

is annotated with a single word, which is its lexical head

21

Each CFG rule must be augmented to
identify one right-side constituent to
be the head child.

Sentence–level Construction of English

• Declaratives: A plane left.
S → NP VP

• Imperatives: Show the lowest fare.
S → VP

• Yes-No Questions: Did the plane leave?
S → Aux NP VP

• WH Questions: When did the plane leave?
S → WH Aux NP VP

22

Parsing Strategies (1/2)

• Top-Down Parsing
• Start with the S symbol and search through different ways to rewrite the symbols

until the input sentence is generated, or until all possibilities have been explored

• Bottom-Up Parsing
• Start with the words in the input sentence and use the rewrite rules backward to

reduce the sequence of symbols until it consists solely of S
• The left side of each rule is used to rewrite the symbols on the right side

• Take a sequence of symbols and match it to the right side of the rule

23

Parsing Strategies (2/2)
Parsing as Search

• Different search algorithms, such as depth-first search (DFS) or breadth-first
search (BFS) algorithms, can be applied

The record of the parsing process, either in top‐down or bottom‐up manners,
can be used to generate the parse tree representation.

24

The Top-Down Parser

• Start with the S symbol and rewrite it into a sequence of terminal symbols
that matches the classes of the words in the input sentence

• The state of the parse at any given time can be represented as a list of symbols that
are the results of operations applied so far

1 The 2 dog 3 cried 4 1. S → NP VP
2. NP → ART N
3. NP → ART ADJ N

4. VP → V
5. VP → V NP

cried: V
dogs: N, V
the: ART

((N VP) 2)

((VP) 3)

((V) 3)

((V NP) 3)

The parser needs to find
an N followed by a VP,
starting at position 2

symbol
lists

Lexicon

25

Rewrite
Rules

possible syntactic
categories for each word

The Simple Top-Down Parser (1/3)

1. S → NP VP
2. NP → ART N
3. NP → ART ADJ N

4. VP → V
5. VP → V NP

cried: V
dogs: N, V
the: ART

(() 4)

Check the input sentence
to see if a match

(for lexical symbols)
occurs ASAP

new states are put onto the
front of the possibilities list

the possibilities list

Lexicon
Rewrite
Rules

26

1 The 2 dog 3 cried 4

The Simple Top-Down Parser (2/3)

• Algorithm
Step 1: Select the current state: take the first state off the possibilities list and call it C

• If the possibilities list is empty, then the algorithm fails
Step 2: If C consists of an empty symbol list and is at the sentence end position, the

algorithm succeeds
Step 3: Otherwise, generate the next possible states

• If the first symbol on the symbol list is a lexical symbol (part-of-speech tag), and
the next word in the sentence can be (matched) in that class, then create a new
state by removing the first symbol from the symbol list and update the word
position, and add it to the possibilities list

• Otherwise, if the first symbol on the symbol list of C is a non-terminal (but not
the lexical symbol), generate a new state for each rule in the grammar that can
rewrite that non-terminal symbol and add them all to the possibilities list

where to put the
new states depends

on the search
strategies

(e.g., BFS or DFS)
27

The Simple Top-Down Parser (3/3)

• One more example

1 The 2 old 3 man 4 cried 5

1. S → NP VP
2. NP → ART N
3. NP → ART ADJ N

4. VP → V
5. VP → V

NP

cried: V
old: ADJ, N
man: N, V
the: ART

new states are put onto the
front of the possibilities list

(depth-first search)

28

Rewrite
Rules

Lexicon

the possibilities list

Search strategies for the Top-Down Parser (1/3)

• Depth-first search: DFS (LIFO: last-in first-out)
• The possibilities list is a stack
• Step 1 always take the first element off the list
• Step 3 always puts (adds) the new states on the front of the list

• Breadth-first search: BFS (FIFO: first-in first-out)
• The possibilities list is a queue
• Step 1 always take the first element off the list
• Step 3 always puts (adds) the new states on the end of the list

29

Search strategies for the Top-Down Parser (2/3)

Not examined
by DFS

30

The number beside each node records when
the node was selected to be processed by

the algorithm.
On the left side is the order produced by

the depth-first strategy (DFS), and on the
right side is the order produced by the
breadth-first strategy (BFS).

Search strategies for the Top-Down Parser (3/3)

• Comparison of DFS and BFS
• DFS

• One interpretation is considered and expanded until fails; only then is the
second one considered

• Often moves quickly to the a solution but in other cases may spend considerable
time pursuing futile paths

• BFS
• All interpretations are considered alternatively, each being expanded one step

at a time
• Explore each possible solution to a certain depth before moving on

31

Many parsers built today use the DFS strategy because
it tends to minimize the no. of backup states needed and
thus uses less memory and requires less bookkeeping.

The Bottom-Up Parser (1/2)

• Start with the words of the input, and try to build tree from the words up,
by applying rules from the grammar one at a time

• The right hand side of some rules might fit

• Successful if the parser succeeds in building a tree rooted in the start symbol (or a
symbol list with S and positioned at the end of the input sentence) that covers all the
input

32

The Bottom-Up Parser (2/2)

1 Book 2 that 3 flight 4

33

Comparing Top-Down and Bottom-UP Parsing

• Top-Down
• Pro: Never wastes time exploring trees that cannot result in an S
• Con: But spends considerable effort on S trees that are not consistent with the input

• Bottom-Up
• Pro: Never suggest trees that are not least locally grounded in the actual input
• Con: Trees that have no hope of leading to an S, or fitting in with any of their

neighbors, are generated with wild abandon
• Pro: Only check the input once

34

Problems with Parsing (1/4)

• Left-recursion
• A non-terminal category that has a derivation that includes itself anywhere

along its leftmost branch
NP → Det Nominal
Det → NP ’s

• Especially, the immediately left-recursive rule
NP → NP ’s N
• E.g. causing a infinite loop in top-down parsing with DFS search

strategy

S → NP VP
NP → NP PP
…..

35

Problems with Parsing (2/4)

• Ambiguity
• Structural ambiguity: arises in the syntactic structures used in parsing

• The grammar assigns more than one possible parse to a sentence
• Attachment ambiguity: Most frequently seen for adverbial phrases

(PP-attachment ambiguity)

• Coordination ambiguity

I shot an elephant in my pajamas.

old men and women

Parsers which do not incorporate disambiguators must simply
return all the possible parse trees for a given input.

36

Problems with Parsing (3/4)

• Ambiguity
Basic ways to alleviate the ambiguity problem
• Dynamic programming

• Used to exploit the regularities in the search space so that the common subpart
are derived only once

• Reduce some of the costs associated with ambiguity
• Implicitly store all possible parses by storing all the constituents with links that

enable the parses to be reconstructed

• Heuristic search
• Augment the parser’s search strategy with heuristics that guide it towards likely

parses first

Problems with Parsing (4/4)

• Repeated Parsing of Subtrees
• The parser often builds valid subtrees for portions of the input, then discards them

during the backtracking
• It has to rebuild these subtrees again
• Some constituents are constructed more than once

38An example of a prepositional phrase attachment ambiguity.

CKY Parsing (1/2)

• The dynamic programming advantage arises from the context-free
nature of our grammar rules

• Once a constituent has been discovered in a segment of the input we can record its
presence and make it available for use in any subsequent derivation that might
require it

• The Cocke-Kasami-Younger (CKY) algorithm is the most widely used
dynamic-programming based approach to parsing

• Chart parsing (Kaplan 1973, Kay 1982) is a related approach
• Dynamic programming methods are often referred to as chart parsing methods

39

CKY Parsing (2/2)

• The CKY algorithm requires grammars to first
be in Chomsky Normal Form (CNF), namely
being binary branching

• Recall that CNF: A → B C or A → w

• The entire conversion process can be
summarized as follows:

1. Copy all conforming rules to the new grammar
unchanged

2. Convert terminals within rules to dummy non-
terminals

3. Convert unit productions
4. Make all rules binary and add them to new

grammar 40

INF-VP → to VP
INF-VP → TO VP
TO → to

Nominal→ Noun Nominal → book | flight | meal | …

CYK Recognition (1/4)
• Employ the CYK algorithm to tell whether a valid exists for a given

sentence based on whether or not CYK finds an S in cell [0, n] of the
parse table we maintain for a sentence of length n

41
Speech and Language Processing (3rd ed.), Chapter 17

Book1 the2 flight3 through4 Houston5

CYK Recognition (2/4)
• The CKY algorithm

• The outermost loop of the algorithm iterates over the columns, from left to right
• The second loop iterates over the rows, from the bottom up

• At each such split k, the algorithm considers whether the contents of the two cells
can be combined in a way that is sanctioned by (被認可) a rule in the grammar

42

Filling POS tags (smallest constituents)

Filling larger constituents

Complexity: O(N3L)?

CYK Recognition (3/4)

43

Book1 the2 flight3 through4 Houston5

CYK Recognition (4/4)

• This figure shows how the five
cells of column 5 of the table
are filled after the word
Houston is read

44

Book1 the2 flight3 through4 Houston5

1
2

3
4

5

Change CKY Recognition to CKY Parsing

• To turn CKY recognition into a parser capable of returning all possible
parses for a given input, we can make two simple changes to the algorithm

1. The first change is to augment the entries in the table so that each non-terminal is
paired with pointers to the table entries from which it was derived

2. The second change is to permit multiple versions of the same non-terminal to be
entered into the table

45

Span-Based Neural Constituency Parsing (1/4)

• Neural CKY (Kitaev et al., 2018, 2019)
• Train a neural classifier to assign a score to each constituent

• Introduce a parser that combines an encoder built using this kind of self-attentive
architecture with a decoder customized for chart parsing

• Then, use a modified version of CKY to combine these constituent scores to find the
best-scoring parse tree

• More properties of Neural CKY
• Learns to map a span of words to a constituent, and, like CKY, hierarchically

combines larger and larger spans to build the parse-tree bottom-up
• But unlike CKY, this parser does not use the hand-written grammar to constrain what

constituents can be combined, instead just relying on the learned neural
representations of spans to encode likely combinations

461. N. Kitaev and D. Klein, “Constituency parsing with a self‐attentive encoder,” ACL 2018
2. N. Kitaev et al., “Multilingual constituency parsing with self‐attention and pre‐training ,” ACL 2019

Berkeley

Span-Based Neural Constituency Parsing (2/4)

• Schematic Depiction

47

BERT (subwords: word pieces)
word-level representations

8 Transformer layers

sሺ𝑖, 𝑗, 𝑙ሻ

For a parse tree T
𝑇 ൌ ሼ 𝑖௧, 𝑗௧, 𝑙௧ : 𝑡 ൌ 1, … , |𝑇|ሽ

s 𝑇 ൌ ∑ sሺ𝑖, 𝑗, 𝑙ሻ ሺ௜,௝,௟ሻ∈்

Span Score:
s 𝑖, 𝑗,⋅
ൌ softmaxሺMଶReLU LayerNorm Mଵ𝐯 𝑖, 𝑗 ൅ 𝐜ଵ ൅ 𝐜ଶሻ

non-terminal label

non-terminal label (e.g., NP)

𝐯 𝑖, 𝑗 ൌ 𝑦௝ െ 𝑦௜; 𝑦௝ାଵ െ 𝑦௜ାଵ
See next page for more details.

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ

Span-Based Neural Constituency Parsing (3/4)

• The output vector of each word 𝑦௧ is spilt into two halves (𝑦௧; 𝑦௧)
• A (leftward-pointing) vector for spans ending at this fencepost (護欄柱), 𝑦௧, and a

(rightward-pointing) vector 𝑦௧ for spans beginning at this fencepost
• More specifically, even coordinates contribute to 𝑦௧ and old coordinates contribute to 𝑦௧

48

fencepost

𝐯 1,3 ൌ ሾ𝑦ଷ െ 𝑦ଵ; 𝑦ସ െ 𝑦ଶሿ

alternative postprocessing layers

Span-Based Neural Constituency Parsing (4/4)

• Choose the final parse tree that has the maximum score

• A variant of the CYK algorithm (Dynamic Programming)
• For spans of length 1

• For other spans (of length >1)

49

𝑇෠ ൌ argmax
𝑇 𝑠ሺ𝑇ሻ

𝑠ୠୣୱ୲ ൌ max
𝑙 𝑠ሺ𝑖, 𝑖 ൅ 1, 𝑙ሻ

𝑠ୠୣୱ୲ 𝑖, 𝑗 ൌ max
𝑙 𝑠 𝑖, 𝑗, 𝑙 ൅ max

𝑘 ሾ𝑠ୠୣୱ୲ 𝑖, 𝑘 ൅ 𝑠ୠୣୱ୲ 𝑘, 𝑗 ሿ

This discriminative parser achieved a state‐of‐the‐art result (with an F1 score of 0.9355) on the Penn Treebank dataset at that time.

The Bottom-Up Chart Parser (1/29)
• A data structure called chart is introduced

• Allow the parser to store the partial results of matching as it done so far
• Such that the work would not be reduplicated

• The basic operation of a chart parser involves combining an active arc
with a complete constituents (keys)

• Three kinds of data structures
• The agenda (to store new complete constituents)
• The active arcs (i.e. partial parse trees)
• The chart

- A subtree corresponding to
a single grammar rule

- Information about the
progress made in completing
the subtree

- Position of the subtree has
to do with the input

NP → ART ADJ N

Top-down

Bottom-up

Space Complexity vs. Time Complexity 50

Kay (1973; 1980)

The Bottom-Up Chart Parser (2/29)

• The Bottom-Up Chart Parsing Algorithm
1. If the agenda is empty, look up the interpretations for the next word in the input

and add them to the agenda
2. Select a constituent from the agenda (Call it constituent C from position p1 to p2)
3. For each rule in the grammar of form X →CX1...Xn , add an active arc of form

X →。CX1...Xn from position p1 to p1

4. Add C to the chart using the following arc extension algorithm
4.1 Insert C into the chart from position p1 to p2

4.2 For any active arc of the form X →X1...。C...Xn from
position p0 to p1 add a new active arc X →X1... C。...Xn from p0 to p2

4.3 For any active arc of the form X → X1... Xn。C from position
p0 to p1, then add a new constituent of type X from p0 to p2
to the agenda

Loop until
no input left

51

The Bottom-Up Chart Parser (3/29)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

Initialization

Chart:

Input: 1 The 2 large 3 can 4 holds 5 the 6 water 7

the: ART
large: ADJ
can: N, AUX
holds: N, V
Water: N

Note that depth-first strategy is used here
=> The agenda is implemented as a stack.

52

The Bottom-Up Chart Parser (4/29)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

Chart:

Enter ART1: (the from 1 to 2)

Agenda:

ART1 1,2
NP → 。ART ADJ N

NP → 。ART N

Loop 1

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Look at next word

53

The Bottom-Up Chart Parser (5/29)

• Example

ART1Chart:

Enter ART1: (the from 1 to 2)

Agenda:

ART1 1,2
NP → ART。ADJ N

NP → ART。N

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

Loop 1

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

(using the arc extension algorithm)

Add active arcs

1 The 2 large 3 can 4 holds 5 the 6 water 7

54

The Bottom-Up Chart Parser (6/29)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1Chart:

Enter ADJ1: (“large” from 2 to 3)

Agenda:

ADJ1 2,3
NP → ART。ADJ N

NP → ART。N

NP → 。ADJ N

Loop 2

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Look at next word

1 The 2 large 3 can 4 holds 5 the 6 water 7

55

The Bottom-Up Chart Parser (7/29)

• Example

ART1 ADJ1Chart:

Enter ADJ1: (“large” from 2 to 3)

Agenda:
ADJ1 2,3

NP → ART ADJ 。N

NP → ART。N

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

NP → ADJ 。 N

Loop 2

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

(using the arc extension algorithm)

There is an NP starting at position 1 which needs an N
starting at position 2.
There is a NP starting at position 1 which needs an ADJ
starting at position 2.

There is an NP starting at position 2 which needs an N
starting at position 3.

1 The 2 large 3 can 4 holds 5 the 6 water 7

56

The Bottom-Up Chart Parser (8/29)

• Example
1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1Chart:

Enter N1: (“can” from 3 to 4)

Agenda:

NP → ART ADJ 。N

NP → ART。N

NP → ADJ 。 N

Loop 3

N1 3,4
No active arcs are added here!AUX1 3,4

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Look at next word

57

The Bottom-Up Chart Parser (9/29)

• Example
1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1Chart:

Enter N1: (“can” from 3 to 4)

Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

Loop 3

N1 3,4
AUX1 3,4

NP1 1,4
NP2 2,4

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

(using the arc extension algorithm)

Two arcs are completed!

58

The Bottom-Up Chart Parser (10/29)

• Example
1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

Enter NP1: (“the large can” from 1 to 4)

Loop 4

ART1 ADJ1 N1Chart:

Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。
NP1 1,4
NP2 2,4

S → 。NP VP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

AUX1 3,4

59

The Bottom-Up Chart Parser (11/29)

• Example

NP1

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Enter NP1: (“the large can” from 1 to 4)

Loop 4

ART1 ADJ1 N1Chart:

Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。
NP1 1,4
NP2 2,4

S → NP 。 VP
AUX1 3,4

(using the arc extension algorithm)

60

The Bottom-Up Chart Parser (12/29)

• Example
1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

NP1

Enter NP2: (“large can” from 2 to 4)
Loop 5

ART1 ADJ1 N1Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N
NP → ADJ N。

NP2 2,4

S → NP 。 VP

S → 。NP VP

AUX1 3,4

61

The Bottom-Up Chart Parser (13/29)

• Example
1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

NP1

Enter NP2: (“large can” from 2 to 4)

Loop 5

ART1 ADJ1 N1Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N
NP → ADJ N。

NP2 2,4

S → NP 。 VP

S → NP 。 VP

NP2

AUX1 3,4

(using the arc extension algorithm)

62

The Bottom-Up Chart Parser (14/29)

• Example
1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

NP1

Enter AUX1: (“can” from 3 to 4)

Loop 6

ART1 ADJ1 N1Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N
NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

AUX1 3,4

VP → 。AUX VP

63

The Bottom-Up Chart Parser (15/29)

• Example 1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

NP1

Enter AUX1: (“can” from 3 to 4)

Loop 6

ART1 ADJ1 N1Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

AUX1 3,4
VP → AUX。VP

AUX1

(using the arc extension algorithm)

64

The Bottom-Up Chart Parser (16/29)

• Example
1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

NP1

Enter N2: (“hold” from 4 to 5)

Loop 7

ART1 ADJ1 N1Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

N2 4,5
VP → AUX。VP

AUX1

V1 4,5

Look at next word

No active arcs are added here!

65

The Bottom-Up Chart Parser (17/29)

• Example

NP1

Enter N2: (“hold” from 4 to 5)

Loop 7

ART1 ADJ1 N1 N2Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

N2 4,5
VP → AUX。VP

AUX1

V1 4,5 No active arcs are added here!

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

(using the arc extension algorithm)

66

The Bottom-Up Chart Parser (18/29)

• Example

NP1

Enter V1: (“hold” from 4 to 5)

Loop 8

ART1 ADJ1 N1 N2Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

VP → AUX。VP

AUX1

V1 4,5

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → 。V NP

67

The Bottom-Up Chart Parser (19/29)

• Example

NP1

Enter V1: (“hold” from 4 to 5)

Loop 8

ART1 ADJ1 N1 N2Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

NP2

VP → AUX。VP

AUX1

V1 4,5

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → V 。NP

V1

(using the arc extension algorithm)

68

The Bottom-Up Chart Parser (20/29)

• Example

NP1

Enter ART2: (“the” from 5 to 6)
Loop 9

ART1 ADJ1 N1 N2Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

VP → AUX。VP

AUX1

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → V 。NP

V1

ART2 5,6
NP → 。ART ADJ N

NP → 。ART N

Look at next word

69

The Bottom-Up Chart Parser (21/29)

• Example

NP1

Enter ART2: (“the” from 5 to 6)

Loop 9

ART1 ADJ1 N1 N2 ART2Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

VP → AUX。VP

AUX1

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → V。NP

V1

ART2 5,6 NP → ART。ADJ N

NP → ART。N

(using the arc extension algorithm)

70

The Bottom-Up Chart Parser (22/29)

• Example

NP1

Enter N3: (“water” from 6 to 7)

Loop 10

ART1 ADJ1 N1 N2 ART2Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

VP → AUX。VP

AUX1

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → V。NP

V1

N3 6,7 NP → ART。ADJ N

NP → ART。N

Look at next word

No active arcs are added here!
71

The Bottom-Up Chart Parser (23/29)

• Example

NP1

Enter N3: (“water” from 6 to 7)

Loop 10

ART1 ADJ1 N1 N2 ART2 N3Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

VP → AUX。VP

AUX1

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → V。NP

V1

N3 6,7 NP → ART。ADJ N

NP → ART N。

NP3 5,7

(using the arc extension algorithm)

72

The Bottom-Up Chart Parser (24/29)

• Example

NP1

Enter NP3: (“the water” from 5 to 7)

Loop 11

ART1 ADJ1 N1 N2 ART2 N3Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

VP → AUX。VP

AUX1

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → V。NP

V1

NP3 5,7 NP → ART。ADJ N

NP → ART N。

S → 。NP VP

73

The Bottom-Up Chart Parser (25/29)

• Example

NP1

Enter NP3: (“the water” from 5 to 7)

Loop 11

ART1 ADJ1 N1 N2 ART2 N3Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

VP → AUX。VP

AUX1

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → V NP 。

V1

NP3 5,7 NP → ART。ADJ N

NP → ART N。

NP3

S → NP 。 VP

VP1 4,7

(using the arc extension algorithm)

1 The 2 large 3 can 4 holds 5 the 6 water 7

74

The Bottom-Up Chart Parser (26/29)

• Example

NP1

Enter VP1: (“hold the water” from 4 to 7)

Loop 12

ART1 ADJ1 N1 N2 ART2 N3Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP 。 VP

S → NP 。 VP

NP2

VP → AUX。VP

AUX1

1 The 2 large 3 can 4 holds 5 the 6 water 7

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → V NP 。

V1

VP1 4,7 NP → ART。ADJ N

NP → ART N。

NP3

S → NP 。 VP

No active arcs are added here! 75

The Bottom-Up Chart Parser (27/29)
• Example

1 The 2 large 3 can 4 holds 5 the 6 water 7

NP1

Enter VP1: (“hold the water” from 4 to 7)

Loop 12

ART1 ADJ1 N1 N2 ART2 N3Chart:
Agenda:

NP → ART ADJ N 。

NP → ART。N NP → ADJ N。

S → NP VP。

NP2

VP → AUX VP。

AUX1

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

VP → V NP 。

V1

VP1 4,7 NP → ART。ADJ N

NP → ART N。

NP3

S → NP 。 VP

VP1

S → NP VP。

S1 1,7
S2 2,7
VP2 3,7

(using the arc extension algorithm)

76

The Bottom-Up Chart Parser (28/29)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

The final Chart

NP1

ART1 ADJ1 N1 N2 ART2 N3

NP2

AUX1 V1 NP3

VP1

VP2

S2

S1

1 The 2 large 3 can 4 holds 5 the 6 water 7

1 The 2 large 3 can 4 holds 5 the 6 water 7

77
Since you have derived an S covering the entire sentence, you can stop successfully. If you wanted to

find all possible interpretations for the sentence, you would continue parsing until the agenda became empty.

78

The Bottom-Up Chart Parser (29/29)

• Characteristics
• The algorithm always moves forward through the chart making additions as it goes

• Arcs are never removed and the algorithm never backtracks to a previous chart entry
once it has moved on

• Different S structures might share the common subparts represented in the chart only
once

78

The Top-Down Chart Parser (1/27)
• The Top-Down Chart Parsing Algorithm

Initialization: For every rule in the grammar of form S →X1...Xk , add an arc
labeled S →。X1...Xk using the arc introduction algorithm

1. If the agenda is empty, look up the interpretations of the next word and add them
to the agenda

2. Select a constituent C from the agenda
3. Using the arc extension algorithm, combine C with every active arc on the

chart. Any new constituents are added to the agenda
4. For any active arcs created in step 3, add them to the chart using the following

top-down arc introduction algorithm
• To add an arc S → C1... 。Ci...Cn ending at position j, do the following:

For each rule in the grammar of form Ci → X1...Xk, recursively add the new
arc Ci → 。X1...Xk from position j to j

Loop until
no input left

79

The Top-Down Chart Parser (2/27)

• Recall “the arc extension algorithm”
• Insert C into the chart from position p1 to p2
• For any active arc of the form X →X1...。C...Xn from position p0 to p1 add a new active

arc X →X1... C。...Xn from p0 to p2
• For any active arc of the form X → X1... Xn。C from position p0 to p1, then add a new

constituent of type X from p0 to p2 to the agenda

80

The Top-Down Chart Parser (3/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

Chart:

Initialization: (using the arc introduction algorithm)

Agenda:

S → 。NP VP
NP → 。ART ADJ N

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

NP → 。ART N

NP → 。ADJ N

Note that no checking of 3rd-person-sg or
non-3rd-person-sg verbs was applied here.

using the arc introduction algorithm

81

The Top-Down Chart Parser (4/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

Chart:

Enter ART1 (“the” from 1 to 2):

S → 。NP VP
NP → 。ART ADJ N

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

NP → 。ART N

NP → 。ADJ N

Agenda:

Loop 1

ART1 1,2

Look at next word

82

The Top-Down Chart Parser (5/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1Chart:

Enter ART1 (“the” from 1 to 2):

S → 。NP VP

NP → ART。ADJ N

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

NP → ART。N

NP → 。ADJ N

Agenda:

Loop 1

ART1 1,2

(using the arc extension algorithm)

(using the arc introduction algorithm for N, ADJ) No Operation
83

The Top-Down Chart Parser (6/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1Chart:

Enter ART1 (“large” from 2 to 3):

S → 。NP VP

1 The 2 large 3 can 4 holds 5 the 6 water 7

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 2

ADJ1 2,3

Look at next word

NP → ART。ADJ N

NP → ART。N

NP → 。ADJ N

84

The Top-Down Chart Parser (7/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1Chart:

S → 。NP VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 2

ADJ1 2,3

NP → ART ADJ 。 N

NP → ART。N

Enter ADJ1 (“large” from 2 to 3): (using the arc extension algorithm)

NP → 。ADJ N

(using the arc introduction algorithm for N) No Operation

85

The Top-Down Chart Parser (8/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1Chart:

S → 。NP VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 3

NP → ART ADJ 。 N

NP → ART。N

NP → 。ADJ N

Enter N1 (“can” from 3 to 4): Look at next word

N1 3,4
AUX1 3,4

86

The Top-Down Chart Parser (9/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1Chart:

S → 。NP VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 3

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N
N1 3,4
AUX1 3,4

(using the arc extension algorithm)Enter N1 (“can” from 3 to 4):

NP1 1,4

(using the arc introduction algorithm) No Operation

87

The Top-Down Chart Parser (10/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1Chart:

S → 。NP VP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 4

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N
NP1 1,4
AUX1 3,4

Enter NP1 (“the large can” from 1 to 4):

1 The 2 large 3 can 4 holds 5 the 6 water 7

88

The Top-Down Chart Parser (11/27)

• Example
1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1Chart:

S → NP。VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 4

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

NP1 1,4
AUX1 3,4

Enter NP1 (“the large can” from 1 to 4):
(using the arc extension algorithm)

NP1

VP → 。AUX VP

VP → 。V NP

(using the arc introduction algorithm for VP) 89

The Top-Down Chart Parser (12/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1Chart:

S → NP。VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 5

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

NP1

Enter AUX1 (“can” from 3 to 4):

VP → 。AUX VP

VP → 。V NP

AUX1 3,4

90

The Top-Down Chart Parser (13/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1Chart:

S → NP。VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 5

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

Enter AUX1 (“can” from 3 to 4):

(using the arc extension algorithm)

NP1

(using the arc introduction algorithm)
No Operation

VP → 。AUX VP

VP → 。V NP

AUX1 3,4

91

The Top-Down Chart Parser (14/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1Chart:

S → NP。VP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 6

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

N2 4,5
V1 4,5

NP1

Enter N2 (“holds” from 4 to 5):

VP → 。AUX VP

VP → 。V NP

Look at next word

1 The 2 large 3 can 4 holds 5 the 6 water 7

92

The Top-Down Chart Parser (15/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1Chart:

S → NP。VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 6

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

N2 4,5
V1 4,5

NP1

VP → 。AUX VP

VP → 。V NP

Enter N2 (“holds” from 4 to 5):
(using the arc extension algorithm)
(using the arc introduction algorithm) No Operation

93

The Top-Down Chart Parser (16/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1Chart:

S → NP。VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 7

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

V1 4,5

NP1

Enter V1 (“holds” from 4 to 5):

VP → 。AUX VP

VP → 。V NP

94

The Top-Down Chart Parser (17/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1 V1Chart:

S → NP。VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 7

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N
V1 4,5

NP1

Enter V1 (“holds” from 4 to 5):

VP → 。AUX VP

VP → V 。NP

(using the arc extension algorithm)

NP → 。ART ADJ N

NP → 。ART N

NP → 。ADJ N

(using the arc introduction algorithm for NP) 95

The Top-Down Chart Parser (18/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1 V1Chart:

S → NP。VP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 8

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N
ART2 5,6

NP1

Enter ART2 (“the” from 5 to 6):

VP → 。AUX VP

VP → V 。NP

NP → 。ART ADJ N

NP → 。ART N

NP → 。ADJ N

Look at next word

1 The 2 large 3 can 4 holds 5 the 6 water 7

96

The Top-Down Chart Parser (19/27)

• Example
1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1 V1 ART2Chart:

S → NP。VP

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 8

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N
ART2 5,6

NP1

Enter ART2 (“the” from 5 to 6):

VP → 。AUX VP

VP → V 。NP
NP → ART 。ADJ N

NP → ART。N

NP → 。ADJ N

(using the arc extension algorithm)

(using the arc introduction algorithm) No Operation
97

The Top-Down Chart Parser (20/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1 V1 ART2Chart:

S → NP。VP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 9

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

NP1

Enter N3 (“water” from 6 to 7):

VP → 。AUX VP

VP → V 。NP
NP → ART 。ADJ N

NP → ART。N

NP → 。ADJ N

Look at next word

N3 6,7

1 The 2 large 3 can 4 holds 5 the 6 water 7

98

The Top-Down Chart Parser (21/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1 V1 ART2 N3Chart:

S → NP。VP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 9

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

NP1

Enter N3 (“water” from 6 to 7):

VP → 。AUX VP

VP → V 。NP
NP → ART 。ADJ N

NP → ART N。

NP → 。ADJ NN3 6,7
NP2 5,7

(using the arc extension algorithm)

(using the arc introduction algorithm) No Operation

1 The 2 large 3 can 4 holds 5 the 6 water 7

99

The Top-Down Chart Parser (22/27)

• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1 V1 ART2 N3Chart:

S → NP。VP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 10

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

NP1

Enter NP2 (“the water” from 5 to 7):

VP → 。AUX VP

VP → V 。NP
NP → ART 。ADJ N

NP → ART N。

NP → 。ADJ NNP2 5,7

1 The 2 large 3 can 4 holds 5 the 6 water 7

100

The Top-Down Chart Parser (23/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1 V1 ART2 N3Chart:

S → NP。VP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 10

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

NP1

VP → 。AUX VP
VP → V NP。

NP → ART 。ADJ N

NP → ART N。

NP → 。ADJ NNP3 5,7

NP2

Enter NP2 (“the water” from 5 to 7):
(using the arc extension algorithm)

VP1 4,7

(using the arc introduction algorithm) No Operation

1 The 2 large 3 can 4 holds 5 the 6 water 7

101

The Top-Down Chart Parser (24/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

Chart:

Agenda:

Loop 11

NP → ART 。ADJ N

Enter VP1 (“holds the water” from 4 to 7):

ART1 ADJ1 N1 V1 ART2 N3

S → NP。VP

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

NP1

VP → 。AUX VP
VP → V NP。

NP → ART 。ADJ N

NP → ART N。

NP → 。ADJ N

NP2

VP1 4,7

1 The 2 large 3 can 4 holds 5 the 6 water 7

102

The Top-Down Chart Parser (25/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1 V1 ART2 N3Chart:

S → NP VP 。

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 11

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

VP1

VP → 。AUX VP VP → V NP。

NP → ART 。ADJ N

NP → ART N。

NP → 。ADJ N

NP2

Enter VP1 (“holds the water” from 4 to 7):
(using the arc extension algorithm)

VP1 4,7

NP1

S1 1,7

(using the arc introduction algorithm) No Operation

1 The 2 large 3 can 4 holds 5 the 6 water 7

103

The Top-Down Chart Parser (26/27)

• Example
1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: NLoop 12

ART1 ADJ1 N1 V1 ART2 N3Chart:

S → NP VP 。

Agenda:

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

VP1

VP → 。AUX VP VP → V NP。

NP → ART 。ADJ N

NP → ART N。

NP → 。ADJ N

NP2

Enter S1 (“the large can holds the water” from 1 to 7):

NP1

S1 1,7

1 The 2 large 3 can 4 holds 5 the 6 water 7

104

The Top-Down Chart Parser (27/27)
• Example

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N

4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

ART1 ADJ1 N1 V1 ART2 N3Chart:

S → NP VP 。

1 The 2 large 3 can 4 holds 5 the 6 water 7
the: ART
large: ADJ
can: N, AUX
hold: N, V
Water: N

Agenda:

Loop 12

NP → ART ADJ N 。

NP → ART。N

NP → 。ADJ N

VP1

VP → 。AUX VP
VP → V NP。

NP → ART 。ADJ N

NP → ART N。

NP → 。ADJ N

NP2

Enter S1 (“the large can holds the water” from 1 to 7):

NP1

S1 1,7

S1

(using the arc extension algorithm)
(using the arc introduction algorithm)

No Operation

105

Comparison between the Bottom-Up an Top-Down Chart Parsers

• The number of constituents generated by the top-down chart parser has
dropped from 15 to 10

• In practice, the top-down method is considerably more efficient for any
reasonable grammar

106

