Vector Semantics and Embeddings

Berlin Chen

Department of Computer Science & Information Engineering
National Taiwan Normal University

References:
1. D. Jurafsky & J. H. Martin, Speech and Language Processing (3nd), Chapter 6 & Teaching Material

EEMUFES, BHEMSES Nets are for fish;
Once you get the fish, you can forget the net.

SHELER, BEMES Words are for meaning;
Once you get the meaning, you can forget the words

Prologue (1/3)
(FEF) 5267 51

 Distributional Hypothesis: Words that occur in similar contexts tend to have

similar meanings
* This link between similarity in how words are distributed and similarity in what they mean

is called the distributional hypothesis

* The hypothesis was first formulated in the 1950s by linguists like Joos (1950),

Harris (1954), and Firth (1957)
» Notice that words which are synonyms (like oculist and eye-doctor) tended to occur in the

same environment (e.g., near words like eye or examined)
» The amount of meaning difference between two words “corresponding roughly to the

amount of difference in their environments” X .
AR - TBEE?

* In this lecture, we discuss vector semantics, which instantiates this linguistic
(distributional) hypothesis by learning representations of the meaning of words,
called embeddings, directly from their distributions in texts

Prologue (2/3)

* Representation Learning: automatically learn useful representations of
the input text

» Finding such self-supervised ways to learn representations of the input, instead of

creating representations by hand via feature engineering, is an important focus of
recent NLP research (Bengio et al., 2013)

« It is not satisfactory that a word is represented as a string of letters, or an index in a
vocabulary list

* Vector Semantics: Categorization of Embeddings

Sparse Dense
Static tf-idf, Word2Vec,
PPMI, etc GloVe, fasttext,
LSA, NMF, PLSA, LDA, etc.
Dynamic Transformer,
BERT,

GPT, etc.

Prologue (3/3)

* |t is desirable that word embeddings can capture the fact, for example, that
the meanings of buy, sell, and pay offer differing perspectives on the same

underlying purchasing event
« If | buy something from you, you’ve probably sold it to me, and | likely paid you

« More generally, a model of word meaning should allow us to draw
inferences to address meaning-related downstream tasks like question-
answering or dialogue

Lemmas and Senses

* Let's look at how one word (we’ll choose mouse) might be defined in a
dictionary (simplified from the online dictionary WordNet)

lemma (citation form) The form mouse would also be the
mouse (N) / lemma for the word mice. Similarly,
sing is the lemma for sing, sang, sung.

1. any of numerous small rodents...
SENSES 7 5. a hand-operated device that controls a cursor...

» A sense or “concept” is the meaning component of a word
* Lemmas can be polysemous (have multiple senses), e.g., bass

« Word Sense Disambiguation (WSD): the task of determining which sense
of a word is being used in a particular context

Relations between Senses: Synonymy

« Synonymy ([5]£): when one word has a sense whose meaning is identical
to a sense of another word, or nearly identical, we say the two senses of
those two words are synonyms ([5]Z:zq))

« A more formal definition of synonymy (between words rather than senses): two words
are synonymous if they are substitutable for one another in any sentence without
changing the truth conditions of the sentence, the situations in which the sentence

would be true BRI
i L
car | automobile water/ H,O big/large couch / sofa P
« Probably no two words are absolutely identical in meaning Lf%
(principle of contrast) L
“‘I_;.,“'j whetes whess
« The word synonym is therefore used to describe a relationship = =« = = = -~ <
of approximate or rough synonymy H,0 in a hiking guide?
my big sister # my large sister 6

http://what-when-how.com/automobile/general-classification-of-automobiles/

Word Similarity

coffee vs. tea
cat vs. dog

* While words do not have many synonyms, most words do have lots of

similar words

 catis not a synonym of dog, but cats and dogs are certainly similar words (both are

pets)

« Knowing how similar two words are can help in computing how similar the
meaning of two phrases or sentences are (useful for many NLP tasks)

Word 1 Word 2 Similarity
vanish disappear 9.8
behave obey 7.3
belief impression 5.95
muscle bone 3.65
modest flexible 0.98
hole agreement 0.3

One way of getting values for word
similarity is to ask humans to judge
how similar one word is to another.
For example the SimLex-999 dataset
(Hillet al., 2015) gives values on a
scale from 0 to 10.

Word Relatedness (1/2)

 Also called “Word Association” in psychology
* The meaning of two words can be related in ways other than similarity

coffee and cup scalpel and surgeon

« One common kind of relatedness between words is if they belong to the
same semantic field or semantic frame/role

« Semantic Field: a set of words which cover a particular semantic domain
and bear structured relations with each other

Hospitals:

surgeon, scalpel, nurse, anaesthetic, hospital
Restaurants:

waiter, menu, plate, food, menu, chef
Houses:

door, roof, kitchen, family, bed

« Semantic fields are also related to topic models, both of which are very useful tools
for discovering topical structure in documents

Word Relatedness (2/2)

« A semantic frame/role is a set of words that denote perspectives or

participants in a particular type of event
« E.g., a commercial transaction event can be encoded lexically by using verbs like buy
(the event from the perspective of the buyer), sell (from the perspective of the seller),
pay (focusing on the monetary aspect), or nouns like buyer

* Frames have semantic roles (like buyer, seller, goods, money), and words in a
sentence can take on these roles

Sentiment (1/2)

« Words have affective meanings or connotations SN E
» Positive connotations (happy)
» Negative connotations (sad)

* The word connotation has different meanings in different fields, but here
we use it to mean the aspects of a word’s meaning that are related to a
writer or reader’s emotions, sentiment, opinions, or evaluations

Connotations can be subtle:
- Positive connotation: copy, replica, reproduction
- Negative connotation: fake, knockoff, forgery

« Some words describe positive evaluation (great, love) and others negative
evaluation (terrible, hate)

 Positive or negative evaluation language is called sentiment
« Word sentiment plays a role in important tasks like sentiment analysis, stance (17%5)
detection, and applications of NLP to the language of politics and consumer reviews

Sentiment (2/2)

 Early work on affective meaning (Osgood et al., 1957) found that words

varied along three important dimensions of affective meaning
« valence (%{[&): the pleasantness of the stimulus
 arousal ("A{L): the intensity of emotion provoked by the stimulus
« dominance (3 fic): the degree of control exerted by the stimulus

Word Score Word Score
Valence love 1.000 Toxic 0.008
(S AR ~ EFEH)

happy 1.000 nightmare 0.005

Arousal elated 0.960 mellow 0.069
(B =R 2 1HY) (& NIgrIREY)

frenzy 0.965 napping 0.046
(R P55 1 3) (B B ARHERY)

Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

Values from NRC VAD Lexicon
(Mohammad 2018)

Vector Semantics (1/2)

* Vector semantics is the standard way to represent word meaning in NLP,
helping us model many of the aspects of word meaning we discussed

above

» Vectors for representing words are called embeddings
* Notice that the meaning of embedding in mathematics is a mapping from one space or
structure to another, although this meaning has shifted

* The idea of vector semantics is to represent a word as a point in a

multidimensional semantic space
» Which is derived from the distributions of word neighbors
« Similar words are “nearby in semantic space”
« Each word is a vector, not just a string like “apple” or an index like “wg,”

Vector Semantics (2/2)

« A visualization of embeddings learned for sentiment analysis, showing the
location of selected words projected down from 60-dimensional space into

a two dimensional space

* Notice the distinct regions containing positive words, negative words, and neutral
function words

not good

bad
© Lo % dislike worst
incredibly bad
that now e y worse
a i
than - a hegative
with s positive
neutral | |
very good incredibly good
amazing fantastic
terrific nice wonderful

good 13

Two Kinds of Word Embeddings

o tf-idf
« A common baseline model and frequently used in information retrieval (IR)
* (static) sparse vectors
* The meaning of words are defined by a simple function of the counts of
nearby words

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

« Word2vec N A
- (static) dense vectors \\\: A
» Word representation is created by training a classifier to F I A I I
predict whether a word is likely to appear nearby ‘ L
» A further extensions of word2vec called wea) [N Jwea
contextual embeddings (like BERT) cBOW Skip-gram

T. Mikolov et al., “Efficient estimation of word representations in vector space,” NIPS 2013 "

Term-Document Matrix (1/2)

« Each document is represented by a vector of words
* Imagine we have a collection of documents, such as all the works of Shakespeare
* We can represent documents in such a collection by a term-document matrix
* In this matrix each row represents a word in the vocabulary and each column
represents a document from the collection

As You Like It Twelfth Night Julius Caesar Henry V
battle an (0) A 13
good |14 80 62 89
fool 36 58 1 4
wit 20 5 &) &)

A simplified term-document matrix for four plays by Shakespeare.

15

Term-Document Matrix (2/2)

A spatial visualization of the document vectors for the four Shakespeare
play documents, showing just two of the dimensions, corresponding to the
words battle and fool

40 7
Henry V [4,13]
\)15—
ES
S 10 71/ Julius Caesar /1,7]
S 7 As You Like It /36,1] Twelfth Night /58,0/
- >
1 T 1T T T T T T T T°>1
5 10 15 20 25 30 35 40 45 50 55 60
fool

» The comedies (As You Like It and Twelfth Night) have high values for the fool
dimension and low values for the battle dimension

Vectors are the Basis of Information Retrieval

* Vectors are similar for the two comedies

N\

As You Like It Twelfth Night Julius Caesar Henry V
battle an (0) A 13
good 114 80 62 89
fool 36 58 1 4
it 20 15 @) 5

 Meanwhile, comedies are different than the other two

« Comedies have more fools and wits and fewer battles

Words as Vectors: Document Dimensions

« The term-document matrix also allows us to represent the meaning of a

word by the documents it tends to occur in
» Associating each word with a word vector (a row vector rather than a column vector)

As You Like It Twelfth Night Julius Caesar Henry V

battle

good
fool
wit

* battle is the kind of word that occurs in Julius Caesar and Henry V
 fool is the kind of word that occurs in comedies, especially Twelfth Night

18

Words as Vectors: Word Dimensions (1/2)

* As an alternative, we can use the term-term matrix, also called the word-

word matrix or the term-context matrix to derive word embeddings

aardvark ... computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 .. 0 0 1 60 19
digital (o 1670 1683 85 5 4)
information 0 3325 3982 378 5 13

» This matrix is thus of dimensionality |V | x |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus

« Two words are similar in meaning if their context vectors are similar (e.g.,
digital and information are more similar to each other)

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

19

Words as Vectors: Word Dimensions (2/2)

information

* A spatial visualization of word vectors for [3982,3325]

digital and information, showing just two
of the dimensions, corresponding to the
words data and computer

digital
[1683,1670]

computer
N W
o o
s S

1000—

I I I I
1000 2000 3000 4000

data
* Rule of Thumb: In real life, the length of the vector |V |, is generally the size
of the vocabulary, often between 10,000 and 50,000 words

* Namely, using the most frequent words in the training corpus
» Keeping words after about the most frequent 50,000 or so is generally not helpful

* Most of those numbers in the term-term matrix are zero these are sparse

vector representations
» There are efficient algorithms for storing and computing with sparse matrices

20

Dot Product for Measuring Similarity (1/2)
* The dot product between two vectors is a scalar:

T

N
dot product(v,w) =v-w=v'w = Z ViW; =V{Wq + VoWy + -+ UyWy
i=1

« The dot product tends to be high when the two vectors have large values
In the same dimensions

Dot product can thus be a useful similarity metric between vectors

* Alternatively, vectors that have zeros in different dimensions—orthogonal
vectors—will have a dot product of 0, representing their strong dissimilarity

Dot Product for Measuring Similarity (2/2)

* Problem with raw dot-product

» Dot product favors long vectors; dot product is higher if a vector is longer (namely,
with higher values in many dimension)

N
— 2
vl = Zi—lvi Vector Length

» Frequent words (of, the, you) have long vectors, since they occur many times with
other words

» Therefore, dot product overly favors frequent words when using it as a measure for
word similarity

* |t is desirable to have a similarity metric that tells us how similar two words are
regardless of their frequency

22

Cosine for Measuring Similarity (1/2)

« Cosine Metric: a modification of dot product which normalizes for the
vector length by dividing the dot product by the lengths of each of the two
vectors

* The cosine similarity metric between two vectors v and w

cos(v,w) =

« —1: vectors point in opposite directions
* +1: vectors point in same directions
* 0: vectors are orthogonal

 Since raw frequency values are non-negative, the cosine for term-term
matrix vectors ranges from 0-—1

Dimension 1: ‘pie’

Cosine for Measuring Similarity (2/2)

442 %5 + 8 %3982 + 2 % 3325 B
/4422 + 82 1 22,/52 139822 1 33252

pie data | computer | cos(cherry,information)

cherry 442 8 2

. cos(digital, information) = 5*5+ 1683 %3982+ 1670 %3325 _
digital 5 | 1,683 1,670 V52 1 16832 1 16702v/52 1 39822 1 33252

996

information 5 3,982 3,325

A (rough) graphical demonstration of cosine
similarity, showing vectors for the words cherry,

information digital, and information in the two dimensional
T space defined by counts of the words computer
500 1000 1500 20[00 25|00 30})0 and pie nearby. Note that the angle between

digital and information is smaller than the angle

Dimension 2: ‘computer between cherry and information.

24

Paradox of Raw Frequency based Representations

* The co-occurrence matrices we have seen represent each cell by word
frequencies

« Frequency is clearly useful; if sugar appears a lot near apricot ({51—),
that is useful information

« But overly frequent words like the, it, or they are not very informative
about the context

* How can we balance these two conflicting constraints?

25

Two Common Solutions for Word Weighting

o tf-idf: tf-idf value for word t in document d
tf-idf(t,d) = tf, 4 x idf;
Words like “the” or “it” have very low idf.

* PMI: pointwise mutual information

P(w;, wyj)
P(w;)P(w;)

PMI(Wi, Wj) = log

To see if words like "good" appear more often with "great"
than we would expect by chance.

26

Term frequency (tf)

« Term frequency (Luhn, 1957) is the raw frequency of the word t in the
document d

tf; ; = count(t, d)
* Instead of using raw count, we squash it a bit

tf, 4 = logqo(count(t,d) +1) or

o, — { 1+ loglo(count(t, d)) if count(t,d) > 0
t,d —
' 0 otherwise

« The intuition is that a word appearing 100 times in a document does not make that
word 100 times more likely to be relevant to the meaning of the document
» Because we cannot take the log of 0, we normally add 1 to the count

Document Frequency (df)

* The second factor in tf-idf is used to give a higher weight to words that

occur only in a few documents
« Terms that are limited to a few documents are useful for discriminating those
documents from the rest of the collection
« Terms that occur frequently across the entire collection are not as helpful

* The document frequency df, of a term t is the number of documents it

occurs in
» Document frequency is not the same as the collection frequency of a term, which is
the total number of times the word appears in the whole collection in any document

Collection Frequency Document Frequency Statistics are accumulated from the
Romeo 113 1 collection of Shakespeare’s 37 plays.

action 113 31

28

Inverse Document Frequency (idf)

» Accordingly, we can emphasize discriminative words like Romeo via the
inverse document frequency (idf) term weight (Sparck Jones, 1972)

Word df idf

. N . N Romeo 1 1.57
itf, =logq, (d_ft) or itf; = logy, (1 + d_ft) e 5o
Falstaff 4 0.967
« N is the total number of documents in the collection forest 12°0.489
battle 21 0.246
As You Like It Twelfth Night Julius Caesar Henry V e 34 0.037
battle 1 | O 113 fool 36 0.012
Raw Counts :good 14 80 62 8 ! good 37 0
fool 36 58 1 4 sweet 37 0
wit 20 15 2 3
As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
tf-idf god O 0 R
fool 0.019 0.021 0.0036 0.0083

Pointwise Mutual Information (PMI)

« Pointwise Mutual Information (Fano, 1961) is one of the most important
concepts in NLP

* PMI can be used as a measure of how often two word w; and w; occur,
compared with what we would expect if they were independent

P(w;,w;) P(w;|wj)

PMI(w;, w;) = lo = lo
(wi, ;) 52 P(w;)P(w;) 52 P(w;)

0(?)

AN | IV

P(Francisco|S
 PMI ranges from —oo to + oo San Francisco log, (Francisco|San)

P (Francisco)

Santa Barbara

Recall: Mutual Information (Ml)

« Ml is the information reduction in uncertainty of one random variable due
to knowing about another, or in other words, the amount of information one
random variable contains about another

I(X;Y) =HX) - HX|Y) = H(Y) — H(Y|X)
o p(x,y) @
I(X, Y) — Zy P(x» y) logp(x)p(y) H(X)/ V\H(Y)
_ p(x,y)
= Ellog cor o]

« Ml is a symmetric, non-negative measure of the common information in the

two variables
« Ml is 0 only when two variables are independent

Positive Pointwise Mutual Information (PPMI)

* The negative values of PMI are problematic
* Things are co-occurring less than we expect by chance
» Unreliable without enormous corpora
* Imagine w; and w; whose probability is each 107°
* Hard to be sure P(w;, w)) is significantly different than 107*2

 Further, it is not clear people are good at “unrelatedness”

 Positive PMI (PPMI): we hence just replace negative PMI values by 0

P(w;, wj)
P(w;)P(w;)

PPMI(wi,Wj) = max(log, ,0)

Computing PPMI on a Term-Context Matrix (1/2)

« Given a matrix F with |V| rows (words) and |C| columns (contexts)
* fij is the of times f; occurs in context ¢;

f') computer data result pie sugar count(w)
p.. = tj cherry 2 8 9 442 25 4386
U = |V wlC| strawberry 0 0 1 60 19 80
Zi 2 j fl j digital 1670 1683 85 5 4 3447
c| information 3325 3982 378 5 13 7703
p. = P(W) — Z] fl] count(context) 4997 5673 473 512 61 11716
ix U QolV] wlC . .
le | le | fij Co-occurrence counts for four words in 5 contexts in the
Wikipedia corpus, together with the marginals, pretending for
V| the purpose of this calculation that no other words/contexts
Z i fl j matter.
P,; =P(c;) = —
J J 2|V| Z|C | f _ p(w,context) p(w)
i j lj computer data result pie sugar p(w)
cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
p strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068
PPMI _ 1 (Wi: Cj) digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
(Wi; Cj) = max(log; P(W)P(c))’ information 02838 03399 0.0323 0.0004 0.0011 0.6575
l]
context 0.4265 0.4842 0.0404 0.0437 0.0052
target word context word .)

33

Computing PPMI on a Term-Context Matrix (2/2)

« Resulting PPMI matrix (negatives are replaced by 0)

computer data result pie sugar
cherry 0 0 0 4.38 3.30
strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0
information 0.02 0.09 0.28 0 0
p(w,context) p(w)
PPMI (W . — informatio n,c; = d ata) computer data result pie sugar p(w)
L J cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
a .3399 0 strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068
= max(log,) digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
6575 X 0.4842 information 0.2838 03399 00323 0.0004 0.0011 0.6575
=.0944
p(context) 0.4265 04842 0.0404 0.0437 0.0052

Weighted PPMI

« PMI and PPMI have the problem of being biased toward infrequent events
* Very rare words tend to have very high PMI values

 Two solutions:

» Give rare words slightly higher probabilities
» Use add-one smoothing (which has a similar effect)

PPMIa(Wl-, cj) = max(log,

count(c;)“

P(w;, ¢j)
P(Wi)Pa(Cj)
lemfija

,0)

Pa(cj) =

* For example, a = 0.75

lecl count(c;)® N Zlivl lec| fii”

Consider two events, P(a) =.99 and P(b)=.01

9975 0175
Po(a) = 5 = .97 Pu(b) =5

9975+.017° 9975+.0175

=.03

35

Sparse Vectors vs. Dense Vectors (1/2)

o tf-idf (or PMI/PPMI) vectors are
* long (with number of dimensions |V|= 20,000 to 50,000)
« sparse (most elements are zero)

* Alternatively, we may learn vectors which are
 short (with number of dimensions 50-1000)

« dense (most elements are non-zero, real-valued numbers that can
be negative)

Sparse Vectors vs. Dense Vectors (2/2)

* Why dense vectors?

» Short vectors may be easier to use as features in machine learning (far fewer
weights of an ML model to tune)

« Dense vectors may generalize better than explicit counts
» Dense vectors may do better at capturing synonymy:

« car and automobile are synonyms, whereas they are indexed by distinct
dimensions of sparse vectors (e.g., tf-idf vectors)

« a word with car as a neighbor and a word with automobile as a neighbor
should be similar, but are not for sparse vector representations

It turns out that dense vectors work better in NLP tasks than sparse vectors.

Common Methods for Getting Short Dense Vectors

« Singular Value Decomposition (SVD)

» A well-studied instantiation of this is Latent Semantic Analysis (LSA)

» “Neural Language Model -inspired models
» Word2vec (skip-gram, CBOW) (Mikolov et al. 2013), GloVe (Pennington et al., 2014).

« Alternative to these “static embeddings” are more recent methods for
learning dynamic contextual embeddings
» Contextual Embeddings (ELMo, BERT)
« Compute distinct embeddings for a word in its context
» Separate embeddings for each token of a word

For all these methods, each dimension of a word embedding does not have a
clear interpretation.

38

Publicly-available Tools for Simple Static Embeddings

« Word2vec (Mikolov et al.), Google
https://code.google.com/archive/p/word2vec/

* GloVe (Pennington et al.), Stanford
http://nlp.stanford.edu/projects/glove/

Notice that: The use of dense vectors to model word meaning, and indeed the term embedding, grew out of the latent
semantic indexing (LSI) model (Deerwester et al., 1988) recast as LSA (latent semantic analysis) (Deerwester et al., 1990).

39

Basic Notion of Word2vec Google

« Word2vec embeddings are static static beddings, meaning that the method
learns one fixed embedding for each word in the vocabulary

* The intuition of word2vec is that instead of counting how often each word
W OCCUrs near, say, apricot (51=), we’ll instead train a classifier on a

binary prediction task: “Is word w likely to show up near apricot?”

» Such a learning paradigm avoids the need for any sort of hand-labeled supervision
signals, often called self-supervision

» This notion was first proposed in the task of neural language modeling (NLM)
(Bengio et al., 2003; Collobert et al. 2011), showing that NLM could just use the next
word in running text as its supervision signal

 NLM can could be used to learn an embedding representation for each word as part
(viz. byproduct) of doing this prediction task

Word2Vec: Learning skip-gram Embeddings (1/8)

 The intuition of skip-gram

1. Treat the target word w and a neighboring context word c as positive examples

2. Randomly sample other words in the lexicon to get negative examples;
namely skip-gram with negative sampling (SGNS)

3. Use logistic regression to train a classifier to distinguish those two cases
4. Use the learned weights as the embeddings

Assume a +/- 2 word window, given a training sentence:

...lemon, a [tablespoon of apricot jam, a] pinch...
C1 Cy w C3 Cy

T. Mikolov et al., “Distributed representations of words and phrases and their compositionality,” NIPS 2013 41

Word2Vec: Learning skip-gram Embeddings (2/8)

e Goal: train a classifier that is given a candidate (word, context) pair
* For example, (apricot#F{—, jam 5#Z) and (apricot, aardvark £ J%), while it is expected to
return the probability where c is a real context word or not (true for jam, false for aardvark)

* Assign each positive (or negative) pair a probability NeUT PROECTON ouTRUT

P(+|w,c) -

Bernoulli distribution /
P(—lW, C) = 1 - P(+|W, C) wi(t-1)

w

* These probability terms can be computed based on a suitable o ' N\
similarity metric, such as dot product (e)
Similarity(w,c) = c-w wits2)

« Which has a value ranging from —oo to o Skip-gram

https://en.wikipedia.org/wiki/Bernoulli_distribution

Word2Vec: Learning skip-gram Embeddings (3/8)

 To turn the dot product into a probability, we use the logistic or siamoid

function o () the fundamental core of logistic regression
1

1.0+

08+

P(+|w,c) =0d(c-w) = 1+ exp(—c-w)

P(—|w,c) = 1 — P(+|w,¢) = o6(—c-w) = 1

1 1+ exp(—x) oo

0.0 ==

sigmoid function

T T T T

T T T T
1 2 3 4

1+ exp(c-w)
e This is for one context word, but we have lots of context

words. We then assume independence and just multiply

them
0 =
P(+|w,c1.) = lic P(+w, ¢;) = [Ti=1 o(c; - W)

L
logP(+|w,c;) = z loga(c; - w)

aardvark

apricot [eee

zebra [@@9

aardvark [eee

apricot [eee

zebra

C

W target words

context & noise
words

i=1

Brief Explanation

P(—|w,c) =1—-P(+|w,c)
=1—o0(c-w)
1
B 1+ exp(—c-w)
exp(—c-w)

1+ exp(—c-w)
1
1
exp(—c-w)
1

- 1+ exp(c-w)

Word2Vec: Learning skip-gram Embeddings (4/8)

« skip-gram with negative sampling (SGNS)

...lemon, a [tablespoon of apricot jam, a] pinch...

C1 Co

positive examples +

apricot tablespoon
apricot of

apricot jam
apricot a

w C3

Cq

negative examples -

w Cneg w Cneg
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

45

Word2Vec: Learning skip-gram Embeddings (5/8)

* skip-gram with negative sampling (SGNS)
» Maximize the similarity of the target with the actual context words, and minimize the
similarity of the target with the k negative sampled non-neighbor words

k
o aardvark [eee
LCE = — lOg [P(‘I‘IW, Cpos) ‘ ‘ P(-lW, Cnegi)] move apricot and jam closer,
i=1

[apricot [eeejw} — - < - increasing ¢, * W
W 5,

\

- = [108 P(+|W» Cpos) + Y5 log P(_|W; Cnegi)] “\:‘\f/ « ..apricot jam...”
zebra (@9 P
7 o . |
- k aardvark [ee@ /e . t and mat. rt
- [log P(+|W: Cpos) + Xi=1log(1 — P(+|W» Cnegi))] — ’/ - movze;g;c;i:gcg aps

C o [matrix @e® C,;|e -~ ",
- : .

m\ Cneng" . - “move apricot and Tolstoy apart

|To|stoy
decreasing €., * W

zebra

46

af
™ le=x(t)

Word2Vec: Learning skip-gram Embeddings (6/8)

Local Minimum

x(t + i) x(t)

» The derivatives of the loss function of
x(t+1)=x(t) N5

k
— R — o Gradient descent is based on the observation that if the multi-variable
LCE log O-(Cpos W) + : : =1 log O-(Cnegi W) function F'(x) is defined and differentiable in a neighborhood of a point a,
1= then F'(x) decreases fastest if one goes from a in the direction of the
aLC negative gradient of F' at a, —V F'(a). It follows that, if
E
e Z[U(Cpos . W)'l] W Start with randomly initialized C and W matrices, an1 = a, —YVF(ay)
pos ; then incrementa”y do updates. for a small enough step size or learning rate v € R, .
oL
__CE_ — U(Cnegi . W) W https://en.wikipedia.org/wiki/Gradient_descent
aLCE k af Local Maximum
= [o(cpos - W) 1]epos + Xiz10(Cneg; - W) Cneg, ax [v=x®
t+1 t
x(t) x(t+1)
ctl =l —no(cpeg, - W)WE X(t+1) = x(0) + 2L
neg; neg; neg; T5x
k
t+1 — Wt . _ .
wit = wh =7 [a(cpos - W) — 1cpos + zi—l 0(Creg; * W) Cneg, .

Word2Vec: Learning skip-gram Embeddings (7/8)

« Recall that the skip-gram model learns two separate embeddings for each

word w;

* The target embedding w; and the context embedding c;, stored in two matrices, the

target matrix W and the context matrix C

* |t is common to just add them together, representing word w; with the

vector w; + ¢;

 Alternatively we can throw away the context matrix C and just represent

each word w; by the vector w;

CH

7

apricot

[eee)
move apricot and jam closer,
7 increasing €. * W

k=2

Tolstoy
N

l jam (@@9

N =" s ’
matrix @ee® C,.,¢|<

E.] - - moveda:cr:ec;;and Tolstoy apart

', move apricot and matrix apart

“...apricot jam...”

decreasing Cqq * W

iNg Cpegp = W

Word2Vec: Learning skip-gram Embeddings (8/8)

1.5

0.5

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about

Country and Capital Vectors Projected by PCA

T T T T

I Chinas
"Beijing
B Russia
Japan«
B *Moscow
Turkey: Ankara ~>Tokyo
Poland«
- Germany«
France Warsaw
» ~Berlin
- Italy< aris
- -=»Athens
Greece« "
I Spain< Rome
“ *Madrid
 Portugal JLisbon
1 1 1 1 | 1 1
-2 -1.5 -1 -0.5 0 05 1 1.5

what a capital city means.

T. Mikolov et al., “Distributed representations of words and phrases and their compositionality,” NIPS 2023

b* =arsimin distance(x,b —a + a")

b AR TN

Rome Paris France Italy

Rumelhart and Abrahamson (1973) proposed the
parallelogram model for solving simple analogy
problems of the form b is to a as what is to a*?

49

Word2Vec: skip-gram vs. CBOW

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)

\SUM / L]
/ R wi(t) w(t) —_—
w(t+1) \ w(t+1)
w(t+2) w(t+2)
cBow Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

T. Mikolov et al., “Efficient estimation of word representations in vector space,” NIPS 2013

50

Semantic Properties of Embeddings

* One parameter of vector semantic models (like word2vec vectors) is the
size of the context window used to collect counts

 This is generally between 1 and 10 words on each side of the target word
(for a total context of 2-20 words)

* The choice depends on the goals of the representation:

» Shorter context windows tend to lead to representations that are a bit more syntactic,
since the information is coming from immediately nearby words, namely similar words
with the same parts of speech

» “wrote” is a first-order (syntagmatic; g5zERY) associate of “book” or “poem”

» When vectors are computed from long context windows, the highest cosine words to
a target word w tend to be words that are topically related but not similar

/,

» “wrote” is a second-order (paradigmatic; 5288 {LHY) associate of words like “said”
or “remarked”

Bias and Embeddings

* |n addition to their ability to learn word meaning from text, word
embeddings also reproduce the implicit biases and stereotypes (%M E15)
that were latent in the text

» Bolukbasi et al. (2016) find that the closest occupation to ‘computer programmer’ -
‘man’ + ‘woman’ in word2vec embeddings trained on news text is ‘homemaker’

» Also the embeddings similarly suggest the analogy ‘father’ is to ‘doctor’ as ‘mother’ is
to ‘nurse’
 As pointed out by (Crawford 2017, Blodgett et al. 2020)
* Representation harm: a harm caused by a system demeaning or even ignoring some
social groups
 Allocation harm: a system allocates resources (jobs or credit) unfairly to different
groups
* Debiasing and harm reduction remain an open problem !

Evaluating Vector Models (1/2)

 Extrinsic evaluation:
» To see whether the adoption of vector models can improve the performance various
downstream NLP tasks such as summarization and information retrieval (IR), etc.
* |ntrinsic evaluation:
» To see their performance on word similarity tasks, computing the correlation between
an algorithm’s word similarity scores and word similarity ratings assigned by humans
* Or, to see their performance on the word analogy tasks

tree
o distance(x,b —a + a") apple Q/'/,Q

vine o
tree apple grape L " ine

children cities city child grape
spout leg table teapot

b* _argmin

Evaluating Vector Models (2/2)

 All embedding algorithms suffer from inherent variability:

* For example, because of randomness in the initialization and the random negative
sampling, algorithms like word2vec may produce different results even from the same
dataset, and individual documents in a collection may strongly impact the resulting

embeddings

» Possible mitigation strategy

 When embeddings are used to study word associations in particular corpora, it is best
practice to train multiple embeddings with bootstrap sampling over documents and

average the results

Vector Models for Extractive Summarization

* To leverage word/sentence/document emebddings for extractive document

summarization (sentence ranking)
* Vector Space Model (Cosine Similarity Measure)

. V.
Vg *Vp Where = ZWED w
[Vs|lvp] D]

SIM(S, D) =

« Graph-based Model (Centrality Measure)

WS(Vi) =(l-a)+ax Z & . WS(VJ-) where wy = wj, = ViV
v;eln(v;) ij |Vi| |V]|
v €Out(v;)
« Language Model (Document Likelihood Measure)
C(W]',D)

P(DIS) = 1_[

WjED

A- Z PrateWil$) - Pue(w; W) + (1 = 1) - Pyus(wj|)

W;ES

exp(vi . V])
wWiEV exp(V; - Vi)

where PWE(lewl) = Z

Chen et al., “Leveraging word embeddings for spoken document summarization," Interspeech 2015

fasttext (1/2) Facebook

* The objective of the skip-gram model is defined as maximizing the
following log-likelihood /[scoring function J
S

IM(w;, ¢) =w{ ¢

— \'T — DIVIAWE,C)
LL = t=1 ZCECt logP(clwt) where P(Cth) o chect exp(SIM(wy¢,c))

 This goal can be alternatively framed as a set of binary classification tasks
» To independently best predict the presence (or absence) of context words (while
minimizing the occurrence of non-context words) with a binary logistic loss

log(1 + exp(—SIM(wy, €))) + Xenc, 10g(1 + exp(SIM(w, w)))

$ X logistic regression
I(w,, €) I [(We, W)]
Logistic loss function negatives randomly sampled from the vocabulary 1+exp(—x)

NLL = 211 [z:cectl(wt, c) + EWENCtl(Wt, w)]

P. Bojanowski et al., “"Enriching word vectors with subword information,” TACL, 2017

56

fasttext (2/2)

« Subword modeling

« Each word w is represented as a bag of character n-gram. We add special boundary
symbols < and > at the beginning and end of words, allowing to distinguish prefixes
and suffixes from other character sequences

where = < where >< wh, ehe, her,ere,re > (n = 3 here)

» Suppose that you are given a dictionary of n-grams of size V. Given a word w, let us
denote by g, (9w < G = {91, 92, ---» 9v,}) the set of n-grams appearing in w, the
scoring function can be thus defined by

SIM(w,, ¢) = Z g’c
9EGw

J. Pennington et al., “GloVe: Global Vectors for Word Representation,” EMNLP 2014

GloVe: Global Vectors for Word Representation stanford

» A global log bilinear regression model that combines the advantages

of global matrix factorization and local context window methods
« GloVe assumes there exists a log bilinear function F that can model the triplet

relations among words (w; w; wy) with their associated embeddings (vl-,vj,vk)

P)T -\ _ F(viTw) _ Pwglw)) _ (Nik/Np) GloVe builds on top the ratios of conditional
(Vi Vi) Vi | = F (VjT‘7k) - P(Wi|w)) - (Nij/Nj) probabilities from the word-word co-occurrence matrix
To be estimated /

« The function can be instantiated by F = exp, namely

Probability and Ratio ‘ k = solid k = gas k = water k = fashion

T~ P(klice) 19107 6.6 x 107 3.0x107% 1.7x 1077
v;' U, = log P(wy|w;) = log Ni,k —log N; P(k|steam) 22% 1075 78 x 107 22x 107 1.8x 1075
— P(klice)/ P(k|steam) 8.9 8.5 x 1072 1.36 0.96

co-occurrence count of w;and wy, occurrence count of w;

« To enforce exchange symmetry to the above equation
ViT‘ka + bi + Ek = log Ni,k
 The training objective for GloVe

J = z,kf(Ni,k)(ViTVk +b; + by —log N) 58
L

n-gram Language Models

* The n-gram language model that determines the probability of an upcoming
word given the previous n-1 word history is the most prominently used

PW =wy,wy,...,wy)
=P(Wl)P(Wzlwl)P(ngwl,Wz)...P(Wmlwl,Wz,...,Wm_l))
m

Chain Rule
= PCwp) [[P(wilwa, wa,.. wios) o
i=2

Multiplication of Conditional Probabilities

* n-gram assumption

P(Wi|W1'W2J"'!Wi—1) ~ P(Wilwi—n+1JWi—n+2'"'rWi—l)

_

Historygfflength n-1
P(Wi |W1, Wo,..., Wi_l) =~ P(Wi |Wi_2, Wi_l) Trigram
P(WL-|W1, Wo,.u) Wi_l) ~ P(Wi|Wi_1) Bigram

P(wi|lwi, wy,...,wi_1) = P(w;) Unigram

R. Rosenfeld, “Two decades of statistical language modeling: Where do we go from here?,” Proceedings of IEEE, 2000 29

Known Weakness of n-gram Language Models

* n-gram language models are Sensitive to changes in the style or topic of

the text on which they are trained
» Assume the probability of next word in a sentence depends only on the identity of last
n-1 words
» Capture only local contextual information or lexical regularity (word

ordering relationships) of a language
* [ronically, n-gram language models take no advantage of the fact that what

IS being modeled is language
» Frederick Jelinek said “put language back into language modeling” (1995)

P(wi|wy,wa,...,W;_1) = Prirgram (Wi|wi—2, wi_1)

Topic Modeling

 Topic language models have been introduced and investigated to
complement the n-gram language models

« A commonality among them is that a set of latent topic variables is introduced to
describe the “word-document’ co-occurrence characteristics

* Models developed generally follow two lines of thought
» Algebraic

» Latent Semantic Analysis (LSA) (Deerwester et al., 1990), nonnegative matrix
factorization (NMF) (Lee and Seung, 1999), etc.

* Probabilistic

* Probabilistic latent semantic analysis (PLSA) (Hofmann, 2001), latent Dirichlet
allocation (LDA) (Blei et al., 2003), Word Topic Model (Chen, 2009) etc.

Latent Semantic Analysis (LSA) (1/3)

o Start with a matrix describing the intra- and Inter-document statistics
between all terms and all documents

 Singular value decomposition (SVD) is then performed on the matrix to
project all term and document vectors onto a reduced latent topical space

Documents

space

latent semantic
k
— | A

Words

FXF rxn

T mxr r <min(m,n) mxn
latent semantic

space

4 =Y a: = |4 =0} +0}+.t0 2
Jj=1

=1 j=

e In the context of IR, matching between queries and documents can be carried out in this
topical space

1. G.W.Furnaset et al., “Information Retrieval using a Singular Value Decomposition Model of Latent Semantic Structure,” SIGIR1988
2. T.K.Landaveretal. (eds.), Handbook of Latent Semantic Analysis, Lawrence Erlbaum, 2007

Latent Semantic Analysis (2/3)

e The latent space of LSA is derived on top of eigen-decomposition of the matrix ATA

o Each entry of ATA represents the correlation (inner product; closeness
relationship) between any document (vector) pairs

* The column vectors v; in V actually are eigenvectors of ATA
« AT A is symmetric and all its diagonal entities are positive (ATA)v; = A,v;

* All eigenvalues A; are nonnegative real numbers

* All eigenvectors v; are orthonormal
- Singular values g; in £ are the square roots of A, (Uj - \//17)

Words Documents Documents

Documents = Documents

nxn

nxm

mxn

LSA bears similarly to PCA (Principal Component Analysis), and has the aim of finding a subspace determined by the eigenvectors
of ATA that preserves most of the relationships (a kind of simple structure information) between documents (compositions).

63

Latent Semantic Analysis (3/3)

* Pro
» A clean formal framework and a clearly defined optimization criterion (least-squares)
» Conceptual simplicity and clarity
* Handle synonymy problems (“heterogeneous vocabulary”)

* Replace individual terms as the descriptors of documents by independent
“artificial concepts” that can specified by any one of several terms (or
documents) or combinations

« Con

» Contextual or positional information for words in documents is discarded (the so-
called “bag-of-words” assumption)

» High computational complexity (e.g., SVD decomposition)
* Word and document representations have negative values

« Exhaustive search are needed when compare among documents or between a query
(word) and a document (cannot make use of inverted files ?)

LSA: Application to Junk E-mail Filtering

* One vector represents the centriod of all e-mails that are of interest to the
user, while the other the centriod of all e-mails that are not of interest

w U S vT

folding-in

T T T
V1 VZ V3

(unscaled) (unscaled)
semantic anchors representation
for new email

J.R. Bellegarda, " Latent Semantic Mapping: Principles & Applications,” Synthesis Lecture on Speech and Audio Processing, 3, 2007.

LSA: Application to Cross-lingual Language Modeling

« Assume that a document-aligned (instead of sentence-aligned) Chinese-
English bilingual corpus is provided

74 U S 4
A - El=[X[] X
C| ,C C
d} dz dN
MxN MXR R XR R XN
PCL—LSA—Unigram (C‘diEj = ZPT (C|e)P(e‘diEj
SVD of a word-document matrix for CL-LSA. €
_ — Pr (c|e)z Sim(E’E)y (}/ >> l)
774 U S VT sim(c’,e)
2= X[] x
olol-10
MxP M xR R XR R xP

Folding-in a monolingual corpus into LSA.

W. Kim & S. Khudanpur, “Lexical triggers and latent semantic analysis for cross-lingual language model adaptation,”
ACM Transactions on Asian Language Information Processing (TALIP), 3(2), pp. 94 —112, 2004.

Nonnegative Matrix Factorization (NMF)

 NMF approximates data with an additive and linear combination of

nonnegative components (or basis vectors)
- Given a nonnegative data matrix V € R\ NMF computes another two

nonnegative matrices W € R:*® and H € RF*M such that V ~ WH
* R K L and R < M to ensure efficient encoding

(basis) (encoding)
_ M oW H
— — PY ol |
® ® L ® D.D. Lee and H. S. Seung,
, ~ , , X : “Learning the parts of
""" T 1 objects by non-negative
| ®o o o -—-- ® matrix factorization,”
— — Nature, 1999.
L= - | L ® ® | (short and wide)

(tall and thin)

67

R
v~ Wh = z hrwr = h1W1 + -+ h’RWR
r=1

NMF: Application

» Modulation Spectrum Factorization for Automatic Speech Recognition (ASR)

PSD of the original c1

4

— 10
10° m—clean
e N A e A === SNR=10 dB
) D B a ng\} === SNR=0 dB
Feature Extracton ~ W [|m | ~ w2
1 1 | ===== 1 g w’ K
) i i I
RE :
H | N [|
H| N [| 10y
~ 2~ A ~ 7 modulation frequency (Hz)
Speech Signal Temporal Sequence of
Speech Feature Vectors
Derivation of
NMF bases
- N 3 e 3 . PSD of NMF_MVN-processed c1
10 T
. . . . the basis vectors in W for MVN-processed c1, r=10
=== clean il ‘ ‘ ‘ ‘
10° =+SNR=10dB 1 3000
: : _____ : § === SNR=0 dB 2500
1 1 1 = 5 <
1 1 I — & 107 — £ 2000
. . . £ gﬁ 1500
. . . 101 L 1000 ‘
~ J < J . J 500 AL /‘
Temporal Sequence of S R S T-wa Y
N orma I |Zed S peech Featu re modulation frequency (Hz) modulation reaueney (10
Vectors 68

W.-Y. Chuy, et al., "Modulation spectrum factorization for robust speech recognition," APSIPA ASC, 2011.

Probabilistic Latent Semantic Analysis (PLSA)

« Each document as a whole consists of a set of shared latent topics with

different weights -- a document topic modeling (DTM) approach

« Each topic in turn offers a unigram (multinomial) distribution for observing a given word
K

PpLsaMWID) =) POwITP(TilD)

* LDA (latent Dirichlet allocation) differs from PLSA mainly in the inference of
model parameters:

« PLSA assumes the model parameters are fixed and unknown
« LDA places additional a priori constraints on the model parameters, i.e., thinking of
them as random variables that follow some Dirichlet distributions

documents topics

G

documents
H'

mixture weights

words
topics

PLSA/LDA E A ~

normalized “word-document” mixture
ccccccccccccccc trix components

1. T. Hoffmann, “Unsupervised learning by probabilistic latent semantic analysis,” Machine Learning, 2001.
2. D. M. Blei et al., “Latent Dirichlet allocation,” Journal of Machine Learning Research, 2003.

PLAS: Empirical Evaluation

Semantic Fields (see. p.p. 8 in this handout)

aviation space missions family love Hollywood love
Aspect 1 | Aspect 2 || Aspect 3 Aspect 4
plane space home film
airport shuttle family movie
crash mission like music
fight astronauts love new
safety launch kids best
aircraft station mother hollywood
air crew life love
passenger nasa happy actor
board satellite friends | entertainment
airline earth cnn star

The 2 aspects to most likely generate the word “flight” (left) and “love’ (right), derived from a K = 128
aspect model of the TDTI document collection. The displayed terms are the most probable words in the class-
conditional distribution P(w; | zx), from top to bottom in descending order.

70

PLSA vs. LDA '

Z (P(ws))

X+Y+Z=1

word 3

X (P(wy))
Y (P(wy))

topic simplex
. Formulation of LDA

= . word simplex

Ng
£9)). PiaB) = [@ (| [©) panl8pwnlzan B)) d6g
, R n=14=dz4,
word 1 topic2 | * , : Lo . Document
ropie? Likelihood

Figure 4: The topic simplex for three topics embedded in the word simplex for three words. The
corners of the word simplex correspond to the three distributions where each word (re-
spectively) has probability one. The three points of the topic simplex correspond to three .
different distributions over words. The mixture of unigrams places each document at one Collection
of the corners of the topic simplex. The pLSI model induces an empirical distribution on Likelihood
the topic simplex denoted by x. LDA places a smooth distribution on the topic simplex
denoted by the contour lines.

M Ng
wod2 polap) =[] [r@da([]°) pemlbortmizam) de,
7¢ = n= Zdn

D. M. Blei, “Latent Dirichlet Allocation,” JMLR, 2003. 71

