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Prologue (1/3)

• Distributional Hypothesis: Words that occur in similar contexts tend to have 
similar meanings

• This link between similarity in how words are distributed and similarity in what they mean 
is called the distributional hypothesis

• The hypothesis was first formulated in the 1950s by linguists like Joos (1950), 
Harris (1954), and Firth (1957)

• Notice that words which are synonyms (like oculist and eye-doctor) tended to occur in the 
same environment (e.g., near words like eye or examined) 

• The amount of meaning difference between two words “corresponding roughly to the 
amount of difference in their environments”

• In this lecture, we discuss vector semantics, which instantiates this linguistic 
(distributional) hypothesis by learning representations of the meaning of words, 
called embeddings, directly from their distributions in texts
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Prologue (2/3)

• Representation Learning: automatically learn useful representations of 
the input text

• Finding such self-supervised ways to learn representations of the input, instead of 
creating representations by hand via feature engineering, is an important focus of 
recent NLP research (Bengio et al., 2013)

• It is not satisfactory that a word is represented as a string of letters, or an index in a 
vocabulary list

• Vector Semantics: Categorization of Embeddings 
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Prologue (3/3)

• It is desirable that word embeddings can capture the fact, for example, that 
the meanings of buy, sell, and pay offer differing perspectives on the same 
underlying purchasing event 

• If I buy something from you, you’ve probably sold it to me, and I likely paid you

• More generally, a model of word meaning should allow us to draw 
inferences to address meaning-related downstream tasks like question-
answering or dialogue
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Lemmas and Senses

• Let‘s look at how one word (we’ll choose mouse) might be defined in a 
dictionary (simplified from the online dictionary WordNet)

• A sense or “concept” is the meaning component of a word
• Lemmas can be polysemous (have multiple senses), e.g., bass

• Word Sense Disambiguation (WSD): the task of determining which sense 
of a word is being used in a particular context
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mouse (N)
1. any of numerous small rodents...
2. a hand‐operated device that controls a cursor... 

The form mouse would also be the 
lemma for the word mice. Similarly, 
sing is the lemma for sing, sang, sung.

lemma (citation form)

senses



Relations between Senses: Synonymy

• Synonymy (同義): when one word has a sense whose meaning is identical 
to a sense of another word, or nearly identical, we say the two senses of 
those two words are synonyms (同義詞)

• A more formal definition of synonymy (between words rather than senses): two words 
are synonymous if they are substitutable for one another in any sentence without 
changing the truth conditions of the sentence, the situations in which the sentence 
would be true

• Probably no two words are absolutely identical in meaning 
(principle of contrast)

• The word synonym is therefore used to describe a relationship
of approximate or rough synonymy
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car / automobile water / H2O   big / large  couch / sofa

H2O in a hiking guide?
my big sister ≠ my large sister

http://what-when-how.com/automobile/general-classification-of-automobiles/



Word Similarity

• While words do not have many synonyms, most words do have lots of 
similar words

• cat is not a synonym of dog, but cats and dogs are certainly similar words (both are 
pets)

• Knowing how similar two words are can help in computing how similar the 
meaning of two phrases or sentences are (useful for many NLP tasks)
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Word 1 Word 2 Similarity
vanish disappear 9.8 
behave obey 7.3 
belief impression 5.95 

muscle bone 3.65 
modest flexible 0.98 

hole agreement 0.3 

One way of getting values for word 
similarity is to ask humans to judge 
how similar one word is to another. 
For example the SimLex-999 dataset 
(Hillet al., 2015) gives values on a 
scale from 0 to 10.

coffee vs. tea
cat vs. dog



Word Relatedness (1/2)

• Also called “Word Association” in psychology
• The meaning of two words can be related in ways other than similarity

• One common kind of relatedness between words is if they belong to the 
same semantic field or semantic frame/role

• Semantic Field: a set of words which cover a particular semantic domain 
and bear structured relations with each other

• Semantic fields are also related to topic models, both of which are very useful tools 
for discovering topical structure in documents 8

coffee and cup scalpel and surgeon

Hospitals:
surgeon, scalpel, nurse, anaesthetic, hospital

Restaurants:
waiter, menu, plate, food, menu, chef

Houses:
door, roof, kitchen, family, bed



Word Relatedness (2/2)

• A semantic frame/role is a set of words that denote perspectives or 
participants in a particular type of event

• E.g., a commercial transaction event can be encoded lexically by using verbs like buy
(the event from the perspective of the buyer), sell (from the perspective of the seller), 
pay (focusing on the monetary aspect), or nouns like buyer

• Frames have semantic roles (like buyer, seller, goods, money), and words in a 
sentence can take on these roles
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Sentiment (1/2)

• Words have affective meanings or connotations
• Positive connotations (happy) 
• Negative connotations (sad)

• The word connotation has different meanings in different fields, but here 
we use it to mean the aspects of a word’s meaning that are related to a 
writer or reader’s emotions, sentiment, opinions, or evaluations

• Some words describe positive evaluation (great, love) and others negative 
evaluation (terrible, hate)

• Positive or negative evaluation language is called sentiment
• Word sentiment plays a role in important tasks like sentiment analysis, stance (立場) 

detection, and applications of NLP to the language of politics and consumer reviews
10

Connotations can be subtle: 
- Positive connotation: copy, replica, reproduction
- Negative connotation: fake, knockoff, forgery

言外之意



Sentiment (2/2)

• Early work on affective meaning (Osgood et al., 1957) found that words 
varied along three important dimensions of affective meaning

• valence (效價): the pleasantness of the stimulus
• arousal (喚起): the intensity of emotion provoked by the stimulus
• dominance (支配): the degree of control exerted by the stimulus
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Word Score Word Score
Valence love 1.000 Toxic

(令人不快的、惡毒的)
0.008

happy 1.000 nightmare 0.005
Arousal elated

(興高采烈的)
0.960 mellow

(令人愉快的)
0.069

frenzy
(極度的激動)

0.965 napping
(昏昏欲睡的)

0.046

Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

Values from NRC VAD Lexicon
(Mohammad 2018)



Vector Semantics (1/2)

• Vector semantics is the standard way to represent word meaning in NLP, 
helping us model many of the aspects of word meaning we discussed 
above

• Vectors for representing words are called embeddings
• Notice that the meaning of embedding in mathematics is a mapping from one space or 

structure to another, although this meaning has shifted

• The idea of vector semantics is to represent a word as a point in a 
multidimensional semantic space

• Which is derived from the distributions of word neighbors
• Similar words are “nearby in semantic space”
• Each word is a vector, not just a string like “apple" or an index like “w60”
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Vector Semantics (2/2)

• A visualization of embeddings learned for sentiment analysis, showing the 
location of selected words projected down from 60-dimensional space into 
a two dimensional space

• Notice the distinct regions containing positive words, negative words, and neutral 
function words
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positive
neutral

negative



Two Kinds of Word Embeddings 

• tf-idf
• A common baseline model  and frequently used in information retrieval (IR)
• (static) sparse vectors
• The meaning of words are defined by a simple function of the counts of 

nearby words

• Word2vec
• (static) dense vectors
• Word representation is created by training a classifier to

predict whether a word is likely to appear nearby
• A further extensions of word2vec called 

contextual embeddings (like BERT)
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T. Mikolov et al., “Efficient estimation of word representations in vector space,” NIPS 2013



Term-Document Matrix (1/2)

• Each document is represented by a vector of words
• Imagine we have a collection of documents, such as all the works of Shakespeare
• We can represent documents in such a collection by a term-document matrix
• In this matrix each row represents a word in the vocabulary and each column 

represents a document from the collection
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A simplified term‐document matrix for four plays by Shakespeare.



Term-Document Matrix (2/2)

• A spatial visualization of the document vectors for the four Shakespeare 
play documents, showing just two of the dimensions, corresponding to the 
words battle and fool

• The comedies (As You Like It and Twelfth Night) have high values for the fool
dimension and low values for the battle dimension 

16



Vectors are the Basis of Information Retrieval

• Vectors are similar for the two comedies

• Meanwhile, comedies are different than the other two
• Comedies have more fools and wits and fewer battles

17



Words as Vectors: Document Dimensions

• The term-document matrix also allows us to represent the meaning of a 
word by the documents it tends to occur in

• Associating each word with a word vector (a row vector rather than a column vector)

• battle is the kind of word that occurs in Julius Caesar and Henry V
• fool is the kind of word that occurs in comedies, especially Twelfth Night

18



Words as Vectors: Word Dimensions (1/2)

• As an alternative, we can use the term-term matrix, also called the word-
word matrix or the term-context matrix to derive word embeddings

• This matrix is thus of dimensionality |V | × |V | and each cell records the number of 
times the row (target) word and the column (context) word co-occur in some context 
in some training corpus

• Two words are similar in meaning if their context vectors are similar (e.g., 
digital and information are more similar to each other)

19



Words as Vectors: Word Dimensions (2/2)

• A spatial visualization of word vectors for
digital and information, showing just two
of the dimensions, corresponding to the
words data and computer

• Rule of Thumb: In real life, the length of the vector |V |, is generally the size 
of the vocabulary, often between 10,000 and 50,000 words 

• Namely, using the most frequent words in the training corpus
• Keeping words after about the most frequent 50,000 or so is generally not helpful

• Most of those numbers in the term-term matrix are zero these are sparse 
vector representations

• There are efficient algorithms for storing and computing with sparse matrices
20



Dot Product for Measuring Similarity (1/2)

• The dot product between two vectors is a scalar:

• The dot product tends to be high when the two vectors have large values 
in the same dimensions

• Dot product can thus be a useful similarity metric between vectors
• Alternatively, vectors that have zeros in different dimensions—orthogonal 

vectors—will have a dot product of 0, representing their strong dissimilarity
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dot product 𝐯, 𝐰 ൌ 𝐯 · 𝐰 ൌ 𝐯𝑻𝐰 ൌ ෍ 𝑣௜𝑤௜ ൌ
ே

௜ୀଵ
𝑣ଵ𝑤ଵ ൅ 𝑣ଶ𝑤ଶ ൅ ⋯ ൅ 𝑣ே𝑤ே



Dot Product for Measuring Similarity (2/2)

• Problem with raw dot-product
• Dot product favors long vectors; dot product is higher if a vector is longer (namely, 

with higher values in many dimension)

• Frequent words (of, the, you) have long vectors, since they occur many times with 
other words

• Therefore, dot product overly favors frequent words when using it as a measure for 
word similarity 

• It is desirable to have a similarity metric that tells us how similar two words are 
regardless of their frequency

22

Vector Length𝐯 ൌ ෍ 𝑣௜
ଶ

ே

௜ୀଵ



Cosine for Measuring Similarity (1/2)

• Cosine Metric: a modification of dot product which normalizes for the 
vector length by dividing the dot product by the lengths of each of the two 
vectors

• The cosine similarity metric between two vectors v and w

• െ1 : vectors point in opposite directions 
• ൅1 :  vectors point in same directions
• 0 : vectors are orthogonal

• Since raw frequency values are non-negative, the cosine for term-term 
matrix vectors ranges from 0–1 
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cos 𝐯, 𝐰 ൌ
𝐯 · 𝐰
𝐯 𝒘 ൌ

∑ 𝑣௜𝑤௜
ே
௜ୀଵ

∑ 𝑣௜
ଶே

௜ୀଵ ∑ 𝑤௜
ଶே

௜ୀଵ



Cosine for Measuring Similarity (2/2)
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pie data computer
cherry 442 8 2
digital 5 1,683 1,670

information 5 3,982 3,325

A (rough) graphical demonstration of cosine 
similarity, showing vectors for the words cherry, 
digital, and information in the two dimensional 
space defined by counts of the words computer
and pie nearby. Note that the angle between 
digital and information is smaller than the angle 
between cherry and information. 



Paradox of Raw Frequency based Representations

• The co-occurrence matrices we have seen represent each cell by word 
frequencies

• Frequency is clearly useful; if sugar appears a lot near apricot (杏仁), 
that is useful information

• But overly frequent words like the, it, or they are not very informative 
about the context

• How can we balance these two conflicting constraints?

25



Two Common Solutions for Word Weighting

• tf-idf:  tf-idf value for word t in document d

• PMI: pointwise mutual information
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PMI 𝑤௜, 𝑤௝ ൌ log
𝑃ሺ𝑤௜, 𝑤௝ሻ

𝑃 𝑤௜ 𝑃ሺ𝑤௝ሻ

Words like “the” or “it” have very low idf.

To see if words like "good" appear more often with "great" 
than we would expect by chance.

tf−idf 𝑡, 𝑑 ൌ tf௧,ௗ ൈ idf௧



Term frequency (tf)

• Term frequency (Luhn, 1957) is the raw frequency of the word t in the 
document d

• Instead of using raw count, we squash it a bit

• The intuition is that a word appearing 100 times in a document does not make that 
word 100 times more likely to be relevant to the meaning of the document

• Because we cannot take the log of 0, we normally add 1 to the count

27

tf௧,ௗ ൌ countሺt, 𝑑ሻ

tf௧,ௗ ൌ logଵ଴ count t, 𝑑 ൅ 1    or

tf௧,ௗ ൌ ቊ 1 ൅ logଵ଴ count t, 𝑑    if count t, 𝑑 ൐ 0
 0                                                     otherwise      



Document Frequency (df)

• The second factor in tf-idf is used to give a higher weight to words that 
occur only in a few documents

• Terms that are limited to a few documents are useful for discriminating those 
documents from the rest of the collection

• Terms that occur frequently across the entire collection are not as helpful
• The document frequency dft of a term t is the number of documents it 

occurs in
• Document frequency is not the same as the collection frequency of a term, which is 

the total number of times the word appears in the whole collection in any document

28

Statistics are accumulated from the 
collection of Shakespeare’s 37 plays.



Inverse Document Frequency (idf)

• Accordingly, we can emphasize discriminative words like Romeo via the 
inverse document frequency (idf) term weight (Sparck Jones, 1972)

• N is the total number of documents in the collection
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itf௧ ൌ logଵ଴
ே

ୢ୤೟
          or    itf௧ ൌ  logଵ଴ 1 ൅ ே

ୢ୤೟
     

Raw Counts

tf-idf



Pointwise Mutual Information (PMI)

• Pointwise Mutual Information (Fano, 1961) is one of the most important 
concepts in NLP

• PMI can be used as a measure of how often two word 𝑤௜ and 𝑤௝ occur, 
compared with what we would expect if they were independent

• PMI ranges from െ∞  to ൅ ∞
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PMI 𝑤௜, 𝑤௝ ൌ logଶ
𝑃ሺ𝑤௜, 𝑤௝ሻ

𝑃 𝑤௜ 𝑃ሺ𝑤௝ሻ ൌ logଶ
𝑃ሺ𝑤௜|𝑤௝ሻ

𝑃 𝑤௜

  ൐
  ൌ
  ൏

   0 ሺ? ሻ  

San Francisco

Santa Barbara

logଶ
𝑃ሺFrancisco|Sanሻ

𝑃ሺFranciscoሻ



Recall: Mutual Information (MI) 

• MI is the information reduction in uncertainty of one random variable due 
to knowing about another, or in other words, the amount of information one 
random variable contains about another

• MI is a symmetric, non-negative measure of the common information in the 
two variables

• MI is 0 only when two variables are independent

31

𝐼 𝑋; 𝑌 ൌ 𝐻ሺ𝑋ሻ െ 𝐻ሺ𝑋|𝑌ሻ ൌ 𝐻ሺ𝑌ሻ െ 𝐻ሺ𝑌|𝑋ሻ
),( YXH

);( YXI
)|( YXH )|( XYH

)(XH )(YH

𝐼 𝑋; 𝑌 ൌ ෍ 𝑝ሺ𝑥, 𝑦ሻ log
𝑝ሺ𝑥, 𝑦ሻ

𝑝ሺ𝑥ሻ𝑝ሺ𝑦ሻ
௫,௬

                  ൌ 𝐄ሾlog ௣ሺ௫,௬ሻ
௣ሺ௫ሻ௣ሺ௬ሻ
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Positive Pointwise Mutual Information (PPMI)

• The negative values of PMI are problematic
• Things are co-occurring less than we expect by chance
• Unreliable without enormous corpora
• Imagine 𝑤௜ and 𝑤௝ whose probability is each 10ି଺

• Hard to be sure 𝑃ሺ𝑤௜, 𝑤௝ሻ is significantly different than 10ିଵଶ

• Further, it is not clear people are good at “unrelatedness”

• Positive PMI (PPMI): we hence just replace negative PMI values by 0
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PPMI 𝑤௜, 𝑤௝ ൌ maxሺlogଶ
𝑃ሺ𝑤௜, 𝑤௝ሻ

𝑃 𝑤௜ 𝑃ሺ𝑤௝ሻ , 0ሻ



Computing PPMI on a Term-Context Matrix (1/2)

• Given a matrix 𝐹 with |𝑉| rows (words) and |𝐶| columns (contexts)
• 𝑓௜௝ is the of times 𝑓௜ occurs in context 𝑐௝
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𝑃௜∗ ൌ 𝑃 𝑤௜ ൌ
∑ 𝑓௜௝

|஼|
௝

∑ ∑ 𝑓௜௝
|஼|
௝

|௏|
௜

𝑃௜௝ ൌ
𝑓௜௝

∑ ∑ 𝑓௜௝
|஼|
௝

|௏|
௜

𝑃∗௝ ൌ 𝑃 𝑐௝ ൌ
∑ 𝑓௜௝

|௏|
௝

∑ ∑ 𝑓௜௝
|஼|
௝

|௏|
௜

PPMI 𝑤௜, 𝑐௝ ൌ maxሺlogଶ
𝑃ሺ𝑤௜, 𝑐௝ሻ

𝑃 𝑤௜ 𝑃ሺ𝑐௝ሻ , 0ሻ

target word         context word

Co-occurrence counts for four words in 5 contexts in the 
Wikipedia corpus, together with the marginals, pretending for 
the purpose of this calculation that no other words/contexts 

matter.



Computing PPMI on a Term-Context Matrix (2/2)

• Resulting PPMI matrix (negatives are replaced by 0)

34

PPMI 𝑤௜ ൌ information, 𝑐௝ ൌ data

ൌ maxሺlogଶ
.3399

.6575 ൈ 0.4842 , 0ሻ
=.0944



Weighted PPMI

• PMI and PPMI have the problem of being biased toward infrequent events
• Very rare words tend to have very high PMI values

• Two solutions:
• Give rare words slightly higher probabilities
• Use add-one smoothing (which has a similar effect)

• For example, 𝛼 ൌ 0.75
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PPMIఈ 𝑤௜, 𝑐௝ ൌ maxሺlogଶ
𝑃ሺ𝑤௜, 𝑐௝ሻ

𝑃 𝑤௜ Pఈሺ𝑐௝ሻ , 0ሻ

𝑃ఈ 𝑐௝ ൌ
countሺ𝑐௝ሻఈ

∑ countሺ𝑐௝ሻఈ|஼|
௝

ൌ
∑ 𝑓௜௝

ఈ|௏|
௝

∑ ∑ 𝑓௜௝
ఈ|஼|

௝
|௏|
௜

Consider two events, P(a) = .99 and P(b)=.01

     𝑃ఈ 𝑎 ൌ .ଽଽ.ళఱ

.ଽଽ.ళఱା.଴ଵ.ళఱ ൌ .97 𝑃ఈ 𝑏 ൌ .଴ଵ.ళఱ

.ଽଽ.ళఱା.଴ଵ.ళఱ ൌ .03



Sparse Vectors vs. Dense Vectors (1/2)

• tf-idf (or PMI/PPMI) vectors are
• long (with number of dimensions |V|= 20,000 to 50,000)
• sparse (most elements are zero)

• Alternatively, we may learn vectors which are
• short (with number of dimensions 50-1000)
• dense (most elements are non-zero, real-valued numbers that can 

be negative)
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Sparse Vectors vs. Dense Vectors (2/2)

• Why dense vectors?
• Short vectors may be easier to use as features in machine learning (far fewer 

weights of an ML model to tune)
• Dense vectors may generalize better than explicit counts
• Dense vectors may do better at capturing synonymy:

• car and automobile are synonyms, whereas they are indexed by distinct 
dimensions of sparse vectors (e.g., tf-idf vectors)

• a word with car as a neighbor and a word with automobile as a neighbor 
should be similar, but are not for sparse vector representations
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It turns out that dense vectors work better in NLP tasks than sparse vectors.



Common Methods for Getting Short Dense Vectors

• Singular Value Decomposition (SVD)
• A well-studied instantiation of this is Latent Semantic Analysis (LSA)

• “Neural Language Model”-inspired models
• Word2vec (skip-gram, CBOW) (Mikolov et al. 2013), GloVe (Pennington et al., 2014).

• Alternative to these “static embeddings” are more recent methods for 
learning dynamic contextual embeddings 

• Contextual Embeddings (ELMo, BERT)
• Compute distinct embeddings for a word in its context
• Separate embeddings for each token of a word

38

For all these methods, each dimension of a word embedding does not have a 
clear interpretation.



Publicly-available Tools for Simple Static Embeddings

• Word2vec (Mikolov et al.), Google
https://code.google.com/archive/p/word2vec/

• GloVe (Pennington et al.), Stanford
http://nlp.stanford.edu/projects/glove/

39

Notice that: The use of dense vectors to model word meaning, and indeed the term embedding, grew out of the latent 
semantic indexing (LSI) model (Deerwester et al., 1988) recast as LSA (latent semantic analysis) (Deerwester et al., 1990).



Basic Notion of Word2vec

• Word2vec embeddings are static static beddings, meaning that the method 
learns one fixed embedding for each word in the vocabulary

• The intuition of word2vec is that instead of counting how often each word 
𝑤 occurs near, say, apricot (杏仁), we’ll instead train a classifier on a 
binary prediction task: “Is word 𝑤 likely to show up near apricot?”

• Such a learning paradigm avoids the need for any sort of hand-labeled supervision 
signals, often called self-supervision

• This notion was first proposed in the task of neural language modeling (NLM) 
(Bengio et al., 2003; Collobert et al. 2011), showing that NLM could just use the next 
word in running text as its supervision signal

• NLM can could be used to learn an embedding representation for each word as part 
(viz. byproduct) of doing this prediction task

40

Google



Word2Vec: Learning skip-gram Embeddings (1/8)

• The intuition of skip-gram
1. Treat the target word 𝑤 and a neighboring context word 𝑐 as positive examples
2. Randomly sample other words in the lexicon to get negative examples; 

namely skip-gram with negative sampling (SGNS)
3. Use logistic regression to train a classifier to distinguish those two cases
4. Use the learned weights as the embeddings

41

Assume a +/- 2 word window, given a training sentence:

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
𝑐ଵ            𝑐ଶ 𝑤            𝑐ଷ      𝑐ସ

T. Mikolov et al., “Distributed representations of words and phrases and their compositionality,” NIPS 2013



Word2Vec: Learning skip-gram Embeddings (2/8)

• Goal: train a classifier that is given a candidate (word, context) pair
• For example, (apricot杏仁, jam 果醬) and (apricot, aardvark 土豚), while it is expected to 

return the probability where 𝑐 is a real context word or not (true for jam, false for aardvark)
• Assign each positive (or negative) pair a probability

• These probability terms can be computed based on a suitable 
similarity metric, such as dot product 

• Which has a value ranging from െ∞ to ∞
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𝑃 ൅|𝑤, 𝑐

      𝑃 െ|𝑤, 𝑐 ൌ 1 െ 𝑃 ൅|𝑤, 𝑐

      Similarity 𝑤, 𝑐 ൌ 𝐜 · 𝐰

𝐰
𝐜

Bernoulli distribution

https://en.wikipedia.org/wiki/Bernoulli_distribution



Word2Vec: Learning skip-gram Embeddings (3/8)

• To turn the dot product into a probability, we use the logistic or sigmoid
function 𝜎 ·  the fundamental core of logistic regression

• This is for one context word, but we have lots of context
words. We then assume independence and just multiply
them
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𝑃 ൅|𝑤, 𝑐 ൌ 𝜎 𝐜 · 𝐰 ൌ
1

1 ൅ exp ሺെ𝐜 · 𝐰 ሻ

𝑃 െ|𝑤, 𝑐 ൌ 1 െ 𝑃 ൅|𝑤, 𝑐 ൌ 𝜎 െ𝐜 · 𝐰 ൌ
1

1 ൅ exp ሺ𝐜 · 𝐰 ሻ
?

𝑃 ൅|𝑤, 𝑐ଵ:௅ ൌ ∏ 𝑃 ൅|𝑤, 𝑐௜
௅
௜ୀଵ ൌ ∏ 𝜎 𝐜௜ · 𝐰௅

௜ୀଵ

log 𝑃 ൅|𝑤, 𝑐௜ ൌ ෍ log 𝜎 𝐜௜ · 𝐰
௅

௜ୀଵ

1
1 ൅ exp ሺെ𝑥ሻ

𝑥



Brief Explanation
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𝑃 െ|𝑤, 𝑐 ൌ 1 െ 𝑃 ൅|𝑤, 𝑐
ൌ 1 െ 𝜎 𝐜 · 𝐰

ൌ 1 െ
1

1 ൅ exp െ𝐜 · 𝐰 

ൌ
exp െ𝐜 · 𝐰 

1 ൅ exp െ𝐜 · 𝐰 

ൌ
1

1 ൅ 1
exp െ𝐜 · 𝐰 

ൌ
1

1 ൅ exp 𝐜 · 𝐰 



Word2Vec: Learning skip-gram Embeddings (4/8)

• skip-gram with negative sampling (SGNS)
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…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
𝑐ଵ            𝑐ଶ 𝑤            𝑐ଷ      𝑐ସ



Word2Vec: Learning skip-gram Embeddings (5/8)

• skip-gram with negative sampling (SGNS)
• Maximize the similarity of the target with the actual context words, and minimize the 

similarity of the target with the k negative sampled non-neighbor words
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𝐿஼ா＝ െ log 𝑃 ൅|𝑤, 𝑐௣௢௦ ෑ 𝑃 െ|𝑤, 𝑐௡௘௚೔

௞

௜ୀଵ

＝ െ log 𝑃 ൅|𝑤, 𝑐௣௢௦ ൅ ∑ log 𝑃 െ|𝑤, 𝑐௡௘௚೔
௞
௜ୀଵ

＝ െ log 𝑃 ൅|𝑤, 𝑐௣௢௦ ൅ ∑ logሺ1 െ 𝑃 ൅|𝑤, 𝑐௡௘௚೔ ሻ௞
௜ୀଵ

       ＝ െ log 𝜎 𝐜௣௢௦ · 𝐰 ൅ ∑ log 𝜎 െ𝐜௡௘௚೔ · 𝐰௞
௜ୀଵ



Word2Vec: Learning skip-gram Embeddings (6/8)

• The derivatives of the loss function
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Start with randomly initialized C and W matrices, 
then incrementally do updates.

𝐿஼ா ＝ െ log 𝜎 𝐜௣௢௦ · 𝐰 ൅ ෍ log 𝜎 െ𝐜௡௘௚೔ · 𝐰
௞

௜ୀଵ

డ௅಴ಶ
డ𝐜೛೚ೞ

ൌሾ𝜎 𝐜௣௢௦ · 𝐰 -1ሿ 𝐰

𝜕𝐿஼ா
𝜕𝐜௡௘௚೔

ൌ 𝜎 𝐜௡௘௚೔ · 𝐰 𝐰

డ௅಴ಶ
డ𝐰

ൌ 𝜎 𝐜௣௢௦ · 𝐰 െ 1 𝐜௣௢௦ ൅ ∑ 𝜎 𝐜௡௘௚೔ · 𝐰௞
௜ୀଵ 𝐜௡௘௚೔

𝐜௣௢௦
௧ାଵ ൌ 𝐜௣௢௦

௧ െ 𝜂 𝜎 𝐜௣௢௦ · 𝐰 െ1 𝐰௧

𝐜௡௘௚೔
௧ାଵ ൌ 𝐜௡௘௚೔

௧ െ 𝜂 𝜎 𝐜௡௘௚೔ · 𝐰 𝐰௧

𝐰௧ାଵ ൌ 𝐰௧ െ 𝜂 𝜎 𝐜௣௢௦ · 𝐰 െ 1 𝐜௣௢௦ ൅ ෍ 𝜎 𝐜௡௘௚೔ · 𝐰
௞

௜ୀଵ
 𝐜௡௘௚೔

https://en.wikipedia.org/wiki/Gradient_descent

𝑥 𝑡   𝑥ሺ𝑡 ൅ 1ሻ

𝜕𝑓
𝜕𝑥 |௫ୀ௫ሺ௧ሻ

𝜕𝑓
𝜕𝑥 |௫ୀ௫ሺ௧ሻ

𝑥 𝑡 ൅ 1  𝑥ሺ𝑡ሻ

𝑥 𝑡 ൅ 1 ൌ 𝑥 𝑡 െ 𝜂
𝜕𝑓
𝜕𝒙

𝑥 𝑡 ൅ 1 ൌ 𝑥 𝑡 ൅ 𝜂
𝜕𝑓
𝜕𝒙

Local Minimum

Local Maximum

?

?



Word2Vec: Learning skip-gram Embeddings (7/8)

• Recall that the skip-gram model learns two separate embeddings for each 
word w௜

• The target embedding 𝐰௜ and the context embedding 𝐜௜, stored in two matrices, the 
target matrix W and the context matrix C

• It is common to just add them together, representing word w௜ with the 
vector 𝐰௜ ൅  𝐜௜

• Alternatively we can throw away the context matrix C and just represent 
each word w௜ by the vector 𝐰௜
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Word2Vec: Learning skip-gram Embeddings (8/8)

49T. Mikolov et al., “Distributed representations of words and phrases and their compositionality,” NIPS 2023

𝐛∗ ＝
argmin

𝐱  distanceሺ𝐱, 𝐛 െ 𝐚 ൅ 𝐚∗ሻ

Rome Paris France Italy

Rumelhart and Abrahamson (1973) proposed the 
parallelogram model for solving simple analogy 
problems of the form b is to a as what is to a*?



Word2Vec: skip-gram vs. CBOW

50T. Mikolov et al., “Efficient estimation of word representations in vector space,” NIPS 2013



Semantic Properties of Embeddings

• One parameter of vector semantic models (like word2vec vectors) is the 
size of the context window used to collect counts

• This is generally between 1 and 10 words on each side of the target word 
(for a total context of 2-20 words)

• The choice depends on the goals of the representation:
• Shorter context windows tend to lead to representations that are a bit more syntactic, 

since the information is coming from immediately nearby words, namely similar words 
with the same parts of speech 

• “wrote” is a first-order (syntagmatic; 詞語的) associate of “book” or “poem”
• When vectors are computed from long context windows, the highest cosine words to 

a target word w tend to be words that are topically related but not similar
• “wrote” is a second-order (paradigmatic; 詞形變化的) associate of words like “said” 

or “remarked”
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Bias and Embeddings

• In addition to their ability to learn word meaning from text, word 
embeddings  also reproduce the implicit biases and stereotypes (刻板印象) 
that were latent in the text

• Bolukbasi et al. (2016) find that the closest occupation to ‘computer programmer’ -
‘man’ + ‘woman’ in word2vec embeddings trained on news text is ‘homemaker’

• Also the embeddings similarly suggest the analogy ‘father’ is to ‘doctor’ as ‘mother’ is 
to ‘nurse’

• As pointed out by (Crawford 2017, Blodgett et al. 2020)
• Representation harm: a harm caused by a system demeaning or even ignoring some 

social groups
• Allocation harm: a system allocates resources (jobs or credit) unfairly to different 

groups
• Debiasing and harm reduction remain an open problem！
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Evaluating Vector Models (1/2)

• Extrinsic evaluation: 
• To see whether the adoption of vector models can improve the performance various 

downstream NLP tasks such as summarization and information retrieval (IR), etc.
• Intrinsic evaluation: 

• To see their performance on word similarity tasks, computing the correlation between 
an algorithm’s word similarity scores and word similarity ratings assigned by humans

• Or, to see their performance on the word analogy tasks
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𝐛∗ ＝
argmin

𝐱  distanceሺ𝐱, 𝐛 െ 𝐚 ൅ 𝐚∗ሻ

vine tree apple grape

children cities city child
spout leg table teapot



Evaluating Vector Models (2/2)

• All embedding algorithms suffer from inherent variability:
• For example, because of randomness in the initialization and the random negative 

sampling, algorithms like word2vec may produce different results even from the same 
dataset, and individual documents in a collection may strongly impact the resulting 
embeddings

• Possible mitigation strategy
• When embeddings are used to study word associations in particular corpora, it is best 

practice to train multiple embeddings with bootstrap sampling over documents and 
average the results
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Vector Models for Extractive Summarization
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• To leverage word/sentence/document emebddings for extractive document 
summarization (sentence ranking)

• Vector Space Model (Cosine Similarity Measure)

• Graph-based Model (Centrality Measure)

• Language Model (Document Likelihood Measure)

SIM 𝑆, 𝐷 ൌ
𝐯ௌ · 𝐯஽

|𝐯ௌ||𝐯஽|
where  𝐯஽ ൌ

∑ 𝐯௪௪∈஽
𝐷

𝑃WE 𝑤௝ 𝑤௜ ൌ
𝑒𝑥𝑝 𝐯௜ · 𝐯௝

∑ 𝑒𝑥𝑝 𝐯௜ · 𝐯௞௪ೖ∈௏

P 𝐷 𝑆 ൌ ෑ λ · ෍ 𝑃MLE 𝑤௜ 𝑆 · 𝑃WE 𝑤௝ 𝑤௜
௪೔∈ௌ

൅ 1 െ λ · 𝑃MLE 𝑤௝ 𝐶
௖ ௪ೕ,஽

௪ೕ∈஽

where 

𝑤𝑖𝑗 ൌ 𝑤𝑗𝑖 ൌ
𝐯𝑖 · 𝐯𝑗
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  




Chen et al., “Leveraging word embeddings for spoken document summarization," Interspeech 2015



fasttext (1/2)

• The objective of the skip-gram model is defined as maximizing the 
following log-likelihood

• This goal can be alternatively framed as a set of binary classification tasks
• To independently best predict the presence (or absence) of context words (while 

minimizing the occurrence of non-context words) with a binary logistic loss
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𝐿𝐿 ൌ ∑ ∑ log P 𝑐 𝑤௧                 where    P 𝑐 𝑤௧ ൌ ୣ୶୮ ሺୗ୍୑ 𝐰೟,𝐜 ሻ
∑ ୣ୶୮ ሺୗ୍୑ 𝐰೟,𝒄 ሻ೎ᇲ∈಴೟

௖∈஼೟
்
௧ୀଵ

logሺ1 ൅ exp ሺെSIM 𝐰௧, 𝐜 ሻሻ ൅ ∑ logሺ1 ൅ exp ሺSIM 𝐰௧, 𝐰 ሻሻ௪∈ே஼೟

𝑁𝐿𝐿 ൌ  ෍ ෍ 𝑙 𝐰௧, 𝐜  ൅ ෍ 𝑙 𝐰௧, 𝐰
௪∈ே஼೟௖∈஼೟

்

௧ୀଵ

𝑙ሺ𝐰௧, 𝐜ሻ 𝑙ሺ𝐰௧, 𝐰ሻ
negatives randomly sampled from the vocabulary 

scoring function

Logistic loss function

SIM 𝐰௧, 𝐜 ൌ 𝐰𝒕
𝑻 𝒄

P. Bojanowski et al., “Enriching word vectors with subword information,” TACL, 2017

Facebook

logistic regression 
ଵ

ଵାୣ୶୮ ሺି௫ሻ



fasttext (2/2)

• Subword modeling
• Each word 𝑤 is represented as a bag of character 𝑛-gram. We add special boundary 

symbols < and > at the beginning and end of words, allowing to distinguish prefixes 
and suffixes from other character sequences 

• Suppose that you are given a dictionary of 𝑛-grams of size Vீ. Given a word 𝑤, let us 
denote by 𝑔௪ ሺ𝑔௪ ⊂ 𝐺 ൌ ሼ𝑔ଵ, 𝑔ଶ, … , 𝑔୚ಸሽ) the set of 𝑛-grams appearing in 𝑤, the 
scoring function can be thus defined by                     
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𝑤ℎ𝑒𝑟𝑒 ⇒ ൏ 𝑤ℎ𝑒𝑟𝑒 ൐൏ 𝑤ℎ, 𝑒ℎ𝑒, ℎ𝑒𝑟, 𝑒𝑟𝑒, 𝑟𝑒 ൐               ሺ𝑛 ൌ 3 ℎ𝑒𝑟𝑒ሻ

SIM 𝐰௧, 𝐜 ൌ ෍ 𝐠்𝒄
௚∈௚ೢ



GloVe: Global Vectors for Word Representation

• A global log bilinear regression model that combines the advantages 
of global matrix factorization and local context window methods

• GloVe assumes there exists a log bilinear function 𝐹 that can model the triplet 
relations among words ሺ𝑤௜,𝑤௝,𝑤௞ሻ with their associated embeddings 𝐯௜,𝐯௝,𝐯௞

• The function can be instantiated by 𝐹 ൌ exp, namely

• To enforce exchange symmetry to the above equation

• The training objective for GloVe
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𝐹 𝐯௜ െ 𝐯௝
்𝐯෤௞ ൌ ி 𝐯೔

೅𝐯෤ೖ
ி 𝐯ೕ೅𝐯෤ೖ

ൌ ௉ሺ௪ೖ|௪೔ሻ
௉ሺ௪ೖ|௪ೕሻ

ൌ ሺே೔,ೖ/ே೔ሻ
ሺே೔,ೕ/ேೕሻ

𝐯௜
்𝐯෤௞ ൎ log 𝑃 𝑤௞ 𝑤௜ ൌ log 𝑁௜,௞ െ log 𝑁௜

𝐯௜
்𝐯෤௞ ൅ 𝐛௜ ൅ 𝒃෩௞ ൎ log 𝑁௜,௞

𝐽 ൌ ෍ 𝑓ሺ𝑁௜,௞ሻሺ𝐯௜
்𝐯෤௞ ൅ 𝐛௜ ൅ 𝒃෩௞ െ log 𝑁௜,௞

௜,௞
ሻ

co-occurrence count of 𝑤௜and 𝑤௞ occurrence count of 𝑤௜

J. Pennington et al., “GloVe: Global Vectors for Word Representation,” EMNLP 2014

To be estimated

GloVe builds on top the ratios of conditional 
probabilities from the word-word co-occurrence matrix 

Stanford



𝑛-gram Language Models

• The 𝑛-gram language model that determines the probability of an upcoming 
word given the previous 𝑛-1 word history is the most prominently used

• 𝑛-gram assumption
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𝑃 𝐖 ൌ 𝑤ଵ, 𝑤ଶ, . . . , 𝑤௠
          
ൌ 𝑃 𝑤ଵ 𝑃 𝑤ଶห𝑤ଵ 𝑃 𝑤ଷห𝑤ଵ, 𝑤ଶ . . . 𝑃 𝑤௠ห𝑤ଵ, 𝑤ଶ, . . . , 𝑤௠ିଵ

          ൌ 𝑃 𝑤ଵ ෑ 𝑃 𝑤௜ห𝑤ଵ, 𝑤ଶ, . . . , 𝑤௜ିଵ

௠

௜ୀଶ
 

𝑃 𝑤௜ห𝑤ଵ, 𝑤ଶ, . . . , 𝑤௜ିଵ ൎ 𝑃 𝑤௜ห𝑤௜ି௡ାଵ, 𝑤௜ି௡ାଶ, . . . , 𝑤௜ିଵ

History of length n-1

𝑃 𝑤௜ห𝑤ଵ, 𝑤ଶ, . . . , 𝑤௜ିଵ ൎ 𝑃 𝑤௜ห𝑤௜ିଶ, 𝑤௜ିଵ

𝑃 𝑤௜ห𝑤ଵ, 𝑤ଶ, . . . , 𝑤௜ିଵ ൎ 𝑃 𝑤௜

𝑃 𝑤௜ห𝑤ଵ, 𝑤ଶ, . . . , 𝑤௜ିଵ ൎ 𝑃 𝑤௜ห𝑤௜ିଵ

Trigram
Bigram
Unigram

Chain Rule

Multiplication of Conditional Probabilities

R. Rosenfeld, ”Two decades of statistical language modeling: Where do we go from here?,” Proceedings of IEEE, 2000



Known Weakness of 𝑛-gram Language Models 

• 𝑛-gram language models are Sensitive to changes in the style or topic of 
the text on which they are trained

• Assume the probability of next word in a sentence depends only on the identity of last 
𝑛-1 words

• Capture only local contextual information or lexical regularity (word 
ordering relationships) of a language

• Ironically, 𝑛-gram language models take no advantage of the fact that what 
is being modeled is language

• Frederick Jelinek said “put language back into language modeling” (1995)
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𝑃 𝑤௜ห𝑤ଵ, 𝑤ଶ, . . . , 𝑤௜ିଵ ൎ 𝑃୘୧୰୥୰ୟ୫ 𝑤௜ห𝑤௜ିଶ, 𝑤௜ିଵ



Topic Modeling

• Topic language models have been introduced and investigated to 
complement the n-gram language models

• A commonality among them is that a set of latent topic variables is introduced to 
describe the “word-document” co-occurrence characteristics

• Models developed generally  follow two lines of thought
• Algebraic

• Latent Semantic Analysis (LSA) (Deerwester et al., 1990), nonnegative matrix 
factorization (NMF) (Lee and Seung, 1999), etc.

• Probabilistic
• Probabilistic latent semantic analysis (PLSA) (Hofmann, 2001), latent Dirichlet 

allocation (LDA) (Blei et al., 2003), Word Topic Model (Chen, 2009) etc.
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Latent Semantic Analysis (LSA) (1/3)

• Start with a matrix describing the intra- and Inter-document statistics 
between all terms and all documents

• Singular value decomposition (SVD) is then performed on the matrix to 
project all term and document vectors onto a reduced latent topical space 

 In the context of IR, matching between queries and documents can be carried out in this 
topical space 
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Words

Documents

1. G. W. Furnaset et al., “Information Retrieval using a Singular Value Decomposition Model of Latent Semantic Structure,”  SIGIR1988
2. T. K. Landauer et al. (eds.) , Handbook of Latent Semantic Analysis, Lawrence Erlbaum, 2007



Latent Semantic Analysis (2/3)

 The latent space of LSA is derived on top of eigen-decomposition of the matrix ATA 
 Each entry of ATA  represents the correlation (inner product; closeness 

relationship) between any document (vector) pairs 

• The column vectors vj in V actually are eigenvectors of A்𝐴
• A்𝐴 is symmetric and all its diagonal entities  are positive

• All eigenvalues  𝜆௝ are nonnegative real numbers

• All eigenvectors 𝐯௝ are orthonormal 
• Singular values 𝜎௝ in Σ are the square roots of 𝜆௝
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mxn

A
nxm

AT Documents

DocumentsWords

Words = ATA
nxn

Documents

Documents

A்A 𝑣௜ ൌ 𝜆௜𝑣௜

𝜎௝ ൌ 𝜆௝

LSA bears similarly to PCA (Principal Component Analysis), and has the aim of finding a subspace determined by  the eigenvectors
of ATA that preserves most of the relationships (a kind of simple structure information) between documents (compositions).  



Latent Semantic Analysis (3/3)

• Pro
• A clean formal framework and a clearly defined optimization criterion (least-squares)

• Conceptual simplicity and clarity
• Handle synonymy problems (“heterogeneous vocabulary”)

• Replace individual terms as the descriptors of documents by independent 
“artificial concepts” that can specified by any one of several terms (or 
documents) or combinations 

• Con
• Contextual or positional information for words in documents is discarded (the so-

called “bag-of-words” assumption)
• High computational complexity (e.g., SVD decomposition)
• Word and document representations have negative values 
• Exhaustive search are needed when  compare among documents or between a query 

(word) and a document (cannot make use of inverted files ?)

64



LSA: Application to Junk E-mail Filtering

• One vector represents the centriod of all e-mails that are of interest to the 
user, while the other the centriod of all e-mails that are not of interest 
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folding‐in

J. R. Bellegarda, “ Latent Semantic Mapping: Principles & Applications,” Synthesis Lecture on Speech and Audio Processing, 3, 2007.



LSA: Application to Cross-lingual Language Modeling

• Assume that a document-aligned (instead of sentence-aligned) Chinese-
English bilingual corpus is provided 
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W. Kim &  S. Khudanpur, “Lexical triggers and latent semantic analysis for cross‐lingual language model adaptation,” 
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Nonnegative Matrix Factorization (NMF)

• NMF approximates data with an additive and linear combination of 
nonnegative components (or basis vectors)

• Given a nonnegative data matrix V ∈ R௅ൈெ, NMF computes another two 
nonnegative matrices W ∈ R௅ൈோ and  H ∈ Rோൈெ such that V ൎ WH

• 𝑅 ≪ 𝐿 and 𝑅 ≪ 𝑀 to ensure efficient encoding
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≈ X

V W H

(tall and thin)
(short and wide)

(basis) (encoding)

𝐯 ൎ W𝐡 ൌ ෍ ℎ௥𝐰௥

ோ

௥ୀଵ

ൌ ℎଵ𝐰ଵ ൅ ⋯ ൅ ℎோ𝐰ோ

D. D. Lee and H. S. Seung, 
“Learning the parts of 
objects by non‐negative 
matrix factorization,” 

Nature, 1999.



NMF: Application

• Modulation Spectrum Factorization for Automatic Speech Recognition (ASR)
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Feature Extraction

Temporal Sequence of 
Speech Feature Vectors

Speech Signal

Derivation of 
NMF bases

Temporal Sequence of 
Normalized Speech Feature 

Vectors
W.‐Y. Chu, et al., "Modulation spectrum factorization for robust speech recognition," APSIPA ASC, 2011. 



Probabilistic Latent Semantic Analysis (PLSA)

• Each document as a whole consists of a set of shared latent topics with 
different weights -- a document topic modeling (DTM) approach

• Each topic in turn offers a unigram (multinomial) distribution for observing a given word

• LDA (latent Dirichlet allocation) differs from PLSA mainly in the inference of 
model parameters:

• PLSA assumes the model parameters are fixed and unknown
• LDA places additional a priori constraints on the model parameters, i.e., thinking of 

them as random variables that follow some Dirichlet distributions
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2. D. M. Blei et al., “Latent Dirichlet allocation,” Journal of Machine Learning Research, 2003.



PLAS: Empirical Evaluation

70

aviation space missions family love Hollywood love

Semantic Fields  (see. p.p. 8 in this handout)



PLSA vs. LDA
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Formulation of LDA


