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Role of Probability Theory

- A framework for analyzing phenomena with uncertain outcomes

- Rules for consistent reasoning
- Use for predictions and decisions about the real world
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Experiments, Outcomes and Event

* An experiment
» Produces exactly one out of several possible outcomes
» The set of all possible outcomes is called the sample space of the experiment,
denoted by
» A subset of the sample space (a collection of possible outcomes) is called an event

« Examples of the experiment
* Asingle toss of a coin (finite outcomes)
» Three tosses of two dice (finite outcomes)
* An infinite sequences of tosses of a coin (infinite outcomes)
» Throwing a dart on a square (infinite outcomes), etc.
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H, T {H, T}, {H}, {T}, @

& = T

J
: TREY
@
A Y __','.__.T.J.:J_
-

~



Probabilistic Models

A probabilistic model is a mathematical description of an
uncertainty situation or an experiment

« Elements of a probabilistic model

 The sample space
» The set of all possible outcomes of an experiment
* The probability law
» Assign to a set A of possible outcomes (also called an event) a nonnegative
number P(A) (called the probability of A) that encodes our knowledge or belief
about the collective “likelihood” of the elements of
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An Example of Sample Space and Probability Law

« The experiment of rolling a pair of 4-sided dice
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{at least one roll is a 4}

Probability = 7/16

{the first roll is equal to the second}

Probability = 4/16



Granularity of the Sample Space
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Probability and Statistics
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Three Probability Axioms

 Nonnegativity
* P(4) =0 , forevery event A

. Additivity

« If A and B are two disjoint events, then the probability of their union satisfies

P(A U B) = P(4) + P(B)

 Normalization
» The probability of the entire sample space Q is equalto 1, that s,

P(Q) =1



Conditional Probability (1/2)

« Conditional probability provides us with a way to reason
about the outcome of an experiment, based on partial

information
» Suppose that the outcome is within some given event B , we wish
to quantify the likelihood that the outcome also
belongs some other given event A

« Using a new probability law, we have the conditional probability
of A given B ,denoted by P(A|B) , which is defined as:

P(A N B)

P(B)

« If P(B) has zero probability, P(A|B)is undefined

« We can think of P(A|B) as out of the total probability of the elements
of B, the fraction that is assigned to possible outcomes that also
belong to A

P(A|B) =




Conditional Probability (2/2)

 When all outcomes of the experiment are equally likely,
the conditional probability also can be defined as

number of elements of AN B

P(A|B) =
(A]B) number of elements of B

« Some examples having to do with conditional probability

1. In an experiment involving two successive rolls of a die, you are told that
the sum of the two rolls is 9. How likely is it that the first roll was a 67

2. In a word guessing game, the first letter of the word is a “t". What is the
likelihood that the second letter is an “h™?

3. How likely is it that a person has a disease given that a medical test was
negative?

4. A spot shows up on a radar screen. How likely is it that it corresponds to
an aircraft?

Machine Learning
(Deep Learning)

P(A|B) orP(A|B€)
P(A°|B) orP(A°|B°)
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Multiplication (Chain) Rule

« Assuming that all of the conditioning events have positive probability, we
have

P(NT 4;) = P(A1)P(A2|A1)P(A3|A1 N Az) - P(Ay| NT7 4))

» The above formula can be verified by writing

P(A,NnA,)P(A; N A, N A3) P(NL,4;)
P(4,) P(A1 N A4y) P(N A;)

P(nT 4;) = P(4,)

* For the case of just two events, the multiplication rule is simply the definition of
conditional probability

P(A4; N A;) = P(A)P(4,]4,)



Total Probability Theorem (1/2)

« Let A;,--, A, be disjoint events that form a partition of the sample space
and assume that P(4,) >0 ,forall i . Then, for any event B , we have

P(B) =P(A4,NnB)+:--+P(4,, N B)
= P(4,)P(B|4;) + -+ P(4,)P(B|4,)

* Note that each possible outcome of the experiment (sample space) is included in one

and only one of the events 4,,---, 4,

Calculate the probability of an event in a divide-and-conquer manner.




Total Probability Theorem (2/2)

Figure 1.13: Visualization and verification of the total probability theorem. The
events Aq,..... 4,, form a partition of the sample space, so the event 5 can be
decomposed into the disjoint union of its intersections A; M B with the sets A;,
i.e.,

B=(A1NB)U---U(A,NB). A4NE

Using the additivity axiom, it follows that

P(B) :P(*';llﬁ B\J‘l""P(—”lnﬁB) Ay NB

Since, by the definition of conditional probability, we have

A,NB

P(A; N B) =P(4,)P(B| A;),

the preceding equality yields
P(B)=P(A1)P(B|A1) +  +P(A.)P(B| An).

For an alternative view, consider an equivalent sequential model, as shown
on the right. The probability of the leaf A; M B is the product P(A;)P(B| A;) of
the probabilities along the path leading to that leaf. The event B consists of the
three highlighted leaves and P(B) is obtained by adding their probabilities.
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Bayes’ Rule

- Let A4, 4,,...,4, be disjoint events that form a partition of the sample
space, and assume that P(4;) > 0, forall i . Then, for any event B
such that P(B) > 0 we have

P(A;): an initial belief of a cenario 4;
(e.g., a dice’s points)
P(A;|B):arevised belief of a cenario 4;
given that B happens

(e.g., the colors, black and red,
on the dice’s points )

P(A; N B) Multiplication rule
P(4;|B) = PL(B)
~ P(4)P(B|4;)
B P(B) D Total probability theorem

P(A4,)P(B|4;)
n_ P(4,)P(B|Ax)

P(A)P(B|4;)
P(4,)P(B|A;) + -+ P(4,)P(B|A,)

14



Bayes’ Rule and Inference

« Put forwarded by Thomas Bayes (c. 1701-1761), Presbyterian minister

« “Bayes’ theorem,” published posthumously

A systematic approach for learning from experience and incorporating new
evidence

« Bayesian Inference
« Initial beliefs P(A;) on possible causes of an observed event B
» Establish a model of the world given each A;: P(B|A4;)

model

A Py

B

 Drawn conclusion about causes

inference
P(A;|B)

B A



Independence (1/2)

 Recall that conditional probability P(A|B) captures the partial information
that event B provides about event 4

A special case arises when the occurrence of B provides no such
information and does not alter the probability that A has occurred

P(A|B) = P(4)

« A isindependentof B ( B alsoisindependent of 4 )

P({j(g)B =rl

= P(4N B)=P(4)P(B)

= P(4|B)=




Independence (2/2)

« A and B are independent => A and B are disjoint (?)
« No ! Why ?

« A and B aredisjointthen P(ANB) =0

- However, if P(A) > 0and P(B) > 0 @

= P(ANB)#P(AP(B)

- Two disjoint events 4 and B with P(4) > 0 and P(B) > 0 are never
iIndependent

« Any event and the event with no outcome (i.e., the empty event) are
independent of each other (?)

« Any event and its complement are not independent of each other (?)

17



Conditional Independence (1/2)

« Givenanevent C ,theevents A and B are called conditionally
independent if

P(AﬂBlc) = P(AlC)P(BlC)
« We also know that
/ ) P(ANnB|C) = PANBNC) multiplication rule
<>L/) ~ P(0) ;
: == P\(G)~P(B|C)P(A|B N C)
—— P\(C\)\

- If P(B|C) > 0 , we have an alternative way to express conditional independence

P(A|BNC) =P(A|C) 3



Conditional Independence (2/2)

* Notice that independence of two events A and B with respect to the
unconditionally probability law does not imply conditional independence,
and vice versa

P(ANB) =P(AP(B) ¢ P(ANB|C) =P(AIC)P(B|C)

If A and B are independent,

A B

/\ C

Are A and B independent given that C occured?

19



Notion of Random Variables (1/2)

e An experiment consists a roll of a six-sided die

v

20



Notion of Random Variables (2/2)

e An experiment consists of a m-person population

o - " -
21 &
H w
1.6 175  h(m) 60 63y (Kg)
Body Mass Index (BMI)
w
Bzm
19.6 246 b (kg/m?)
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Random Variables

« Given an experiment and the corresponding set of possible outcomes
(the sample space), a random variable associates a particular number

with each outcome
« This number is referred to as the (numerical) value of the random variable
« We can say a random variable is a real-valued function of the experimental
outcome

Random Variable X

Sample Space
Q

Real Number Line

22



Discrete/Continuous Random Variables (1/2)

« Arandom variable is called discrete if its range (the set of values that it
can take) is finite or at most countably infinite

finite : {1, 2, 3, 4}, countably infinite : {I, 2, ---}

« Arandom variable is called continuous (not discrete) if its range (the
set of values that it can take) is uncountably infinite

« E.g., the experiment of choosing a point a from the interval [-1, 1]

« Arandom variable that associates the numerical value g2 to the outcome a is not
discrete



Discrete/Continuous Random Variables (2/2)

« A discrete random variable X has an associated probability mass
function (PMF), py(x), which gives the probability of each numerical
value that the random variable can take

* A continuous random variable X can be described in terms of a

nonnegative function fy(x) (fyx(x) = 0) , called the probability density
function (PDF) of X , which satisfies

for every subset B of the real line P(X € B) = jfx(x)dx
B



Interpretation of PDF

« For an interval [x, x + 6] with very small length §, we have

P(lx,x+5])= L)CH& fx@ht = fy(x)6

» Therefore, fx(x) can be viewed as the “probability mass per unit length” near x

PDF fy{x
) X( ) - Figure 3.2: Interpretation of the PDF

fx (z) as “probability mass per unit length”
around x. If 4 is very small, the prob-
ability that X takes value in the inter-
val [z,z + 4] is the shaded area in the
) I figure, which is approximately equal to

X X +0 T Ix(@)s

* fx(x) is not the probability of any particular event, it is also not restricted to
be less than or equal to one

25



Cumulative Distribution Functions (1/4)

« The cumulative distribution function (CDF) of a random variable X is
denoted by F,(x) and provides the probability P(X < x)

.
z px(k), if X is discrete
Fx(x) =P(X <x) =4 K=x
fx(t)dt, if X is continuous
\/ — 00

- The CDF Fyx(x) accumulates probability up to X

- The CDF Fy(x) provides a unified way to describe all kinds of random variables
mathematically



Cumulative Distribution Functions (2/4)

« The CDF Fx(x) is monotonically non-decreasing
if Xi < X then FX(xi) < FX(X])

 The CDF Fx(x) tendsto0as x - —w,andto1as x -» o

« If Xis discrete, then Fy(x) is a piecewise constant
function of

PMF
PX(X) CDF Fy(x)
1mI—-—-—--- o T e
Px2) F---- Px(2)
0 1 2 3 4 x ol 1 2 3 4 «




Cumulative Distribution Functions (3/4)

 If X is continuous, then Fx(x) is a continuous function of x

| PDF fy () ) CDF Fx(x)
1

b-a

(X < x) = j (O dt

fX(X)Zm,fOTClSXSb fx 1
= dt
s b—a
2 _X—Cl
o-a ~b—a
fx(x) = c(x — a), fora<x<bh a b X a b X
b c b
:]c(x—a)dx=—(x—a)2 =1 x
© ., ; R <0 = | f@d
:>C=(b—a)2 xZ(t—a)a (x_a)z
2(b—a) 2 = a(b—a)zdtz(b—a)z

:’fX(b)z(b—a)Z_b—a



Cumulative Distribution Functions (4/4)

« If X is discrete and takes integer values, the PMF and the CDF can
be obtained from each gther by summing or differencing

() =PX <) = ) px(D,

pe(k) =P(X < k) —P(X < k—1) = Fy(k) — Fy(k — 1)

 If X is continuous, the PDF and the CDF can be obtained from each
other by integration or differentiation

Fe(x) = P(X < x) = j fe(®)dt,

dFy(x)
dx

fx(x) =

» The second equality is valid for those x for which the CDF has a derivative (e.g.,
the piecewise constant random variable)



Conditioning

e Let X and Y be two random variables associated with the same

experiment
« If X and Y are discrete, the conditional PMF of X is defined as
(where Dy (y) )

PX=xY=y) pxr&xy)
P(Y =y) py(¥)

PX|Y(X|}’) =PX =xlY =y) =

« If X and Y are continuous, the conditional PDF of X is defined as
(where fy(y) >0 )

_ fxy(x,y)
leY(xly) = )




Independence
« Two random variables X and Y are independent if

Pxy(x,y) = px(x)py (¥), for all x, y (If X and Y are discrete)

fxy(x,y) = fx(xX)fy(y), forallx,y (If X and Y are continuous)

e [f two random variables X and Y are independent

PX|Y(X|3’) = px(x), forallx,y (If X and Y are discrete)

fX|Y(X|3’) = fx(x), forallx,y (If X and Yy are continuous)



Inference and the Continuous Bayes’ Rule (1/2)

« As we have a model of an underlying but unobserved phenomenon,
represented by a random variable X with PDF f, and we make a noisy
measurement Y, which is modeled in terms of a conditional PDF fy .
Once the experimental value of Y is measured, what information does this
provide on the unknown value of X? (the so-called noisy channel model)

Hidden Random Variable Observed Random Variable Hidden Random Variable

X Y X
—— Measurement » Inference |——
fx(x) fY|X()’|X) fX|Y(55|Y)

_fX,Y(xay)_ fX(x)fy‘X(y‘x)
oy (5ly)= ) ) Sy Wl

Note that we have

foYIX = fX,Y = foX|Y

32



Inference and the Continuous Bayes’ Rule (2/2)
Inference about a Discrete Random Variable

If the unobserved phenomenon is inherently discrete
« Let N is a discrete random variable of the form {N = n}that represents the

different discrete probabilities for the unobserved phenomenon of interest,
and P~ be the PMF of N

P(N=nlY =y)=P(N=n|ly<Y <y+§6)

_PN=n)P(y<Y <y+46|N=n)
B Ply<Y <y+56)

~ pN(n)an(yIn)S
fr(y)é

_ bW fyn(yIn)
fr(y)

--------------- ) Total probability theorem
_ pn (M) fyin(vIn)

a 2PN (i)fle(J’|i)

33
33



Inference Based on a Discrete Random Variable

* The earlier formula expressing P(A|Y = y) in terms of fy4(y), which can
(See pp. 33 of this handout)

P(A)fyia) = rPAIY =)
S ] P(A) fyrya(y)dy = f frIPAIY = y)dy

= P(4) = f fyr)P(A|Y = y)dy (~ normalization property:f friady = 1)



Discrete Random Variables: Expectation

* The expected value (also called the expectation or the mean) of a
discrete random variable X , with PMF Px , is defined by

BX] = ) xpx()

X

» Can be interpreted as the center of gravity of the PMF
(Or a weighted average, in proportion to probabilities, of the possible values of X )

* The expectation is well-defined if
J ' I ' Z(x — )px(x) =0
D 2y () < o0 \ 2
=>c= x - px(x)
x 2

* Thatis, z xpx(x) converges to a finite value

X

Center of Gravity
c=Mean E[X]



Discrete Random Variables: Moments

 The n-th moment of a discrete random variable X is the expected value
of a random variable X" (or the random variable v , y = g(X) = x" )

EX™] £ ) "y ()

X
» The 1st moment of a random variable X is just its mean (or expectation)

X" is termed as X raised to the power of n (or the nth power),
or the nth power of X.



Expectations for Functions of Discrete Random Variables

« Let X be arandom variable with PMF Px, and let g(X) be a function
of X .Then, the expected value of the random variable g(X) is given

by X P
Elg(0] = ) g(opx®) I

Qs
i8]

!
O
 To verify the above rule
+ Let Y = g(X) ,and therefore py(y) = z pyx(x)

xlg(x)=y}
Elg(0] = E[Y] = ) ypy()
=Dy D> m@=) > g
vy {xlg()=y} v {xlgt=y}

X

_____________



Discrete Random Variables: Variance

* The variance of a random varlable X is the expected value of a
random variable (X — E(X))

var(X) = E[(X — E[X])?]

E(X— [XD?px (x) I ‘III EY‘

* The variance | |s always nonnegative (why?)

« The variance provides a measure of dispersion of X around its mean

» The standard derivation is another measure of dispersion, which is defined as
(a square root of variance)

oy =/ var(X)

« Easier to interpret, because it has the same units as X and capture the width
of X'’s distribution



Variance in Terms of Moments Expression

* We can also express variance of a random variable X as

var ()= B[ |- (B[x ]
7 ™~

Second Moment Square of First Moment

var(X) = Z<x— X1)? py (x)

‘Z(" — 22E[X] + (E[XD?) px ()

[zx px(x) |+ 2E[X Z xpx (x)

E[X2] — 2(E[X])? + (E[X])?
E[XZ]—(E[ )2

+ (E[X])?




More on Expectation and Moments (1/2)

* The expectation of a random variable X is defined by

E[X] = zxpx(x) (If X is discrete)
or X
E[X] =j x fy (x)dx (If X is continuous)

» The n-th moment of a random variable X is the expected value of a
random variable X™ (or the random variable

E[X"] = Zx"px(x) (If X is discrete)
or x
E[X"] =J x™ fy(x)dx (If X is continuous)

» The 1st moment of a random variable is just its mean



More on Expectation and Moments (2/2)

e Let X bearandom variable andletY =aX + b

E[Y] = aE[X]+ b
var(Y) = a? var(X)

If X and Y areindependent random variables
E[XY] = E[X]E[Y]

var(X +Y) = var(X) + var(Y) g and h are functions
of X and Y , respectively

E[g(X)h(Y)] = E[g(X)]E[A(Y)]



Variance of the Sum of Two “Dependent” Random Variables

var(X +Y) = var(X) + var(Y) + 2cov(X,Y)

var(X +Y) = E[((X +Y) —E[X + Y])?]

=E[(X +Y)?] —2E[X + Y] E[X + Y] +(E[X + Y]))?

= E[X?] + E[Y?] + 2E[XY] — E[X + Y] E[X + Y]

= E[X?] + E[Y?] + 2E[XY] — (E[X] + E[Y])?

= E[X?] — (E[X]D?* + E[Y?*] — (E[Y]D? + 2(E[XY] — E[X]E[Y])
= var(X) + var(Y) + 2cov(X,Y)

Note that cov(X,Y) = E[(X — E[X])(Y — E[Y])]
= E[XY] — E[X]E[X]




Two Useful Probability Laws

« Law of Iterated Expectations

E|E[X|Y]| = E[X]

 Law of Total Variance

var(X) = E[var(X|Y)] + var(E[X|Y])

LDA: Linear Discriminant Analysis

max

Var(E[I_/)T)?lY]) .
E[Var(l_/)T)? | Y)] '

7

2

PCA: Principal Component Analysis

max E[Var(VT)_()IY)] + Var(E[VTXIY])?

N

43



More on Conditional Expectation

E[X] = E[E[X|Y]] =<

E[X|Y = y] =

,
ZXXPXW(?CD’)

J_ fo|Y(x|)’)dx

(
z E[X|Y = ylpy(y) (if Y is discrete)
y

& j E[X|Y =ylfy(y)dy (if Y is continuous)

(if X is discrete)

(if X is continuous)



Bayesian Statistics (1/6)

* Frequentist Statistics vs. Bayesian Statistics

« Bayesian updating
» Acoin is tossed 10 times and gets 8 heads
» This coin comes down heads 8 times out of 10 (from a frequentist

point of view)
» This is the Maximum Likelihood Estimate (MLE)

P(head) = 0.8
P(tail) = 0.2

» Bayesian statistics: measure degree of belief, and are calculated by
starting with prior belief and updating them in the face of evidence, by
use of Bayes’ theorem



Bayesian Statistics (2/6)

- Let 6,,, be the model that asserts P(head) = m, s be a sequence of

observations, i heads and j tails
e Foranym,0<m<1:

P(s|0,,) = m'(1 —m)’
« From a frequentist point of view, we wish to find the MLE
?
arg max P(s|0,,)= arg maxlog P(s|0,,)
m m
* logarithmic functions are monotone increasing functions
L
I+

» We can differentiate the above polynomial then the answer is
or 0.8 for the case of 8 heads and 2 tails



Bayesian Statistics (3/6)

« Bayesian Updating:

» Let us instead assume that one’s prior belief is modeled by the distribution

f(Om) = 6m(1—m)

» This polynomial was chosen because its distribution is centered on 1/2, and, conveniently,
the area under the curve between 0 and 1 is 1

* When one sees an observation sequence s one wants to know one’s new belief in the
fairness of the coin. By Bayes’ theorem

P(S|0)f(6m) _ m‘(1-m)/x6m(1-m)  emi*tl(1-m)/+1

fOnls) =——73 P(s) P(s)



Bayesian Statistics (4/6)

» P(s) is the prior probability of s, and we can ignore it while finding the m that
maximizes the above equation (P(s) is a normalization factor)

 If we then differentiate the numerator so as find its maximum, we can
determine that for the case of 8 heads and 2 tails:

arg max f(0,,|s)=3/4  the maximum of the a posteriori distribution (MAP)
m

» Because our prior was weak (the polynomial is a quite flat curve centered over 1/2),
we have moved a long way in the direction of believing that the coin is biased, but
the important point is that we haven’t moved all the way to 0.8

« If we had assumed a stronger prior, we would have moved a smaller distance from
1/2



Bayesian Statistics (5/6)

6mi+1(1 _ m)j+1
arg max f(06,,|s) = arg max

« arg max 6m'*t1(1 — m)/+1

m
? . .
= arg max log6om!*1(1 —m)/*?

m
dlogom™*t(1—-m)/*t  m 1-m
om i+l j+1
dlog6m'*t1(1 — m)/+1 i+ 1
= 0>m=——
am 1 +j+2

. arg max P(0,,|s) = Z

m



Bayesian Statistics (6/6)

* More on P(s)
» This marginal probability which can be obtained by taking integral of all the
P(s|6,,,) weighted by the probability of £(6,,)

1
P(s) = j P(510,)f (By)dm
0
— fol 6m'*1(1 —m)/*ldm

» This just happens to be an instance of the Beta integral, another continuous
distribution well-studied by statisticians. we can look up to find out that

6(i+1)!(j+1)!
(i+]J+3)!

P(s) =



Entropy (1/3)

« Entropy measures the amount of information in a random variable

1 1
H(X) = = Xxexp(x)log, v (x)= Xyex p(x)log; () = E[log, ﬁ]

 We define 0log, 0 =0

The entropy of a weighted coin. The
horizontal axis shows the probability
of a weighted coin to come up heads.
The vertical axis shows the entropy
of tossing the corresponding coin
once.

Entropy
(=] o (=]

Probability

* Entropy can be regarded as
« The average uncertainty of a single random variable
» The average length of the message needed to transmit an outcome of that variable
» We can think of entropy as a matter of how surprised we will be
« We hope the entropy is lower in the system (?)



Entropy (2/3)

« Example: Suppose you are reporting the result of rolling an fair 8-sided die

8
* Then the entropy is (X)) = _Z p()log,p(i)

i=1 . .
== ?=1§1082 3
= — 1083 3

= log, 8
=3

» The most efficient way is to simply encode the result as a 3 digit binary message

Result: 1 2 3 4 5 6 7 8
Binary Encoding: 001 010 011 100 101 110 111 000



Entropy (3/3)

- Entropy can be interpreted as a measure of the size of the “search space”
consisting of the possible values of a random variable and its associated
probabilities (7)

* Note that: 8
« HX) =0
* H(X) = 0 only when the value of X is determinate ;/ o 1/ N0
(providing no new information)
« Entropy increases with the message length

111 110 101 100 011 010 001 000

« Another example: simplified Polynesian language with six letters

Letter: p t k a [ u 1
Probability: 1/8 1/41/8 1/4 1/8 1/8 H(X) = 25 (bits)
Binary Encoding: 100 00 101 01 110 111



Joint Entropy and Conditional Entropy (1/2)

« Joint Entropy

« The amount of information needed on average to specify both their values

HX,Y) = —ZZp(x,y) logp (x,y) = E[log ]

XEX YEY

p(X,Y)
« Conditional Entropy:

« How much extra information you still need to supply on average to communicate Y
given that the other party knows X

H(Y|X) = Z p()HY|X = x) ﬁ.//o\i\/ﬁ/l}\.
XEX S
=Y p|- ) po0lgp G| . ’

E

e

<
N

xeX yeY

——E Ep(xy)logp(ylx) BN
- )

XEX YyEY




Joint Entropy and Conditional Entropy (2/2)

« Chain Rule for Entropy

H(X,Y) = H(X) + H(Y|X)
H(Xq, .., Xn) = H(X1) + HX | X))+ +H(X| Xy, o K1)

e Proof: HX,Y)=-— z Z p(x,y)logp (x,y)

XEX YEY “p(x,y) =pylx)p(x)

=) pEy) g (Y0p@)]

XEX YyEY

=) pay)llogp (Ix) +logp ()

XEXyey  meemmeemeeee-

z Z p(x,y)logp (y|x) — Z z p(x, y) logp (x)

XEX yeY xeXx yEY

= H(Y|X) + H(X) p(x)



Simplified Polynesian Language Revisited
C,V, GV, CVs ... C,V;
« Simplified Polynesian has syllable structure, viz. all words consist of

sequences of CV (consonant-vowel) syllables (totally, 7 syllables)

 This suggests a better model in terms of two random variables C for the
consonant of a syllable, and V for the vowel

5 Letter: p t k a [ u
" | Probability: 1/16 3/8 1/16 1/4 1/8 1/8
Consonants
{ x | H(C) = — z p(C = c)log,p(C = ¢) = 1.061 (bits)
c=p,tk
- p(ylx) = 222
2 | w16 | 3 |16 |12 | HE|C) = — Z p(C = )H(VIC = ¢) ()
Vowels — i |1/16|3/16| 0 |1/4 c=p,tk \
1 3 1
Dule [mwali] =3 ezl =p) (el = ) (eiic =)
1/8 | 3/4 | 1/8 =1.375 (bits) ?
The letters have a different H(C,V) = 1.061 + 1.375 = 2.436 (bits)

ity distribution th
S;Zk;iz,;gyu?:igfnu;;gnt an The entropy for whole syllables




Entropy Rate

» Because the amount of information contained in a message depends on
the length of the message, we normally want to talk in terms of the per-
letter or per-word entropy

* For a message of length n, the per-letter or per-word entropy, also known
as the entropy rate, is

1 1
Hi o = EH(Xl,XZ, vy Xpy) = - Z p(x1 X2, ..., Xp) 108D (%1 X3, .., Xp)

xl’xz,...,xn



Mutual Information (1/5)

* By the chain rule for entropy H(X,Y)
HX,Y)=HX)+HY|X)=H®Y) +HX|Y)

 Therefore, we have

/ N
H(X) — H(X|Y) = H(Y) — H(Y|X) H(X) H(Y)

 This difference is called the mutual information (MI) I1(X;Y) between X and Y

* ltis the information reduction in uncertainty of one random variable due to knowing
about another, or in other words, the amount of information one random variable
contains about another

I(X;Y) = HX) — HX|Y) = H(Y) — H(Y|X)



Mutual Information (2/5)

« Mutual information is a symmetric, non-negative (?) measure of the
common information in the two variables

* |t is a measure of independence
« Itis O only when two variables are independent
» For two dependent variables, mutual information grows not only with the degree of
dependence, but also according to the entropy of the variables
I(X;Y) = H(X) HX|Y) = H(X) +H(Y) H(X,Y) H(X,Y)=H(Y)+ HX|Y)

Zp(x)log +Zp(y>log +Zp(x y)logp (x,)

= z p(x,y) logm + )Z p(x,y) 108@ + Z p(x,y)logp (x,y)

1 1
= Z p(x,y) [log— +log—— + logp (x, y)]

= p(x) p(y)

~ . p(x,y) |
= ) 1 — T | . _ p(x’y)
i;p(x g @) i HIGY) = E[logp(x)p(y)]



Mutual Information (3/5)

| px)p(y)
= — Yy P(x,y)log——"—= iy

> log (Zx y p(x y) M) iJensen Inequality for convex functions

* Non-negativity Property of Mutual Information ‘
p(x,y) ;
IX;Y=pr,ylo ; :
( ) ( ) gp(x)p(y) . 2 3 4 5 6 7 8 9 1011

______________________________ p(x,y) ' (negative logarithm is convex)
=log(Xx, p(X)p(»))
o log 1 Let f be a real convex function, x, € dom(f) and a, > 0 Vi e {1,...,n}. Then,
=0

n n
Z . Z a"f (Xf ) af(x,) + a,f(x,) /
a, +a,

/. f i=1 < i=1

10
| Convex / . Non-convex
| / \ ,- = E a; E a
\ / AR / . Point a,X; + a,x

> 2 : =1 i=1 ﬁ] o
MINIMUM xl al ar aﬁ X2
-
-10

60
https://twitter.com/mathtype/status/1397191184158691338?lang=zh-Hant



Mutual Information (4/5)

 Properties of Mutual Information

c I(X,X)=HX) (+~ HX)=H(X) — HX|X) = I(X, X), where H(X|X) = 0)

» Conditional Mutual Information
I(X;Y|Z2) =1((X;Y)|Z) = HX|Z) — H(X|Y,Z)
e Chain Rule for Mutual Information

I(Xl'Xll JXTL ) Y) — I(Xl ) Y) + .-+ I(Xn ) Yle, ,Xn_l)



Mutual Information (5/5)

* the pointwise mutual information (PMI) is defined between two particular

points
p(x,y)

p(x)p(y)

PMI(x,y) = log

 PMI has sometimes been used as a measure of association between elements, but

there are problems with using this measure
* PMI has been used many times in Statistical NLP, such as for clustering words. It also

turns up in word sense disambiguation



More on Mutual Information

 Recall: The mutual information between two random variables can be

definedasI(Z;Y) = H(Z) —H(Z|Y) (Z:embeddings, Y : output)
« An ordinal entropy regularizer is employed to learn highentropy feature
representations that preserve ordinality

s _ ) - : .
! Entropy : . RS Tightness ) I Diversity. . -
' MSE o : . A : e
x @ z | fa Je—7 Y ! HHEI) i —.}f(Z) J:
Fihe SRR N R
G oy h
Discretization : iy S
x @ z Yo Yoo—— ¥°
Cross .
Entropy Features corresponding to Cj Z(:i =mrmimemi= * Zci Features corresponding to Cj
(a) Illustration of frameworks (b) Tightness and diversity of ordinal entropy

Figure 2: [llustration of (a) regression and classification for continuous targets, and the use of our
ordinal entropy for regression, (b) the pull and push objective of tightness and diversity on the feature
space. The tightness part encourages features to be close to their feature centers while the diversity

part encourages feature centers to be far away from each other.

S. Zhang et al., “Improving deep regression with ordinal entropy,” ICLR 2023
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Kullback-Leibler Divergence (1/3)

 Kullback-Leibler (KL) divergence is also known as Relative Entropy
 For two probability mass functions p(x) and q(x), their relative entropy is
given by
KL(p|1q) = Txex p(x) logZ 0 = Ep[logZ2] ( 0logg=0 and plogf=eo)
« KL divergence a measure of how different two probability distributions (over

the same event space) are
» This quantity is always non-negative (?), also dubbed KL distance, and

KL(p|lg) = 0 iff p(x) = q(x) for all x
« KL divergence is not symmetric inp and q, KL(p||q) # KL(q||p), and it does not satisfy

the triangle inequality

KL(pllq) = KL(p||h) + KL(h||q)



Kullback-Leibler Divergence (2/3)

KL(ll9) = Z () log L

q(x)
(x)
log & loga < a—1
erx p(x)log—= p(x() | L ‘l’fg“a S
q(x
ZxEXp(x)(l _ @)

_(ZxEX p(x) - erX CI(X))
-(1-1)
0



Kullback-Leibler Divergence (3/3)

« Recall: Mutual information (MI) is actually just a measure of how far a joint
distribution is from independence

o p(x,y)
I(X;Y) = ;p(’“' y) lng(x)p(y)

= KL(p(x,y)|lp(x)p(y))

« We can also derive conditional relative entropy and a chain rule for relative
entropy

KLOOIlaT) = Y p() Y p(ylx) log Ao
X y

q(y|x)

KL(p(x,y)llq(x,y)) z KL(p(x)|lq(x)) + KL(p(y|x)|lq(¥]x))



Cross Entropy

* The cross entropy (CE) between a random variable X with true probability
distribution p(x) and another PMF q(x) (normally a model of p) is given by

CE(,q) = — 2LxexP(x) log q (x) =xyex p(x)log— (x) = Epllog—]

* Relationship between cross entropy, entropy and KL divergence different probability models

p(x) by !
KL(pIlg) = Z p(x)log P =ty
q(x) q(x) = P(X = x|M,)
1 Probability(llj\/ll\js)s Function
— ZxEX p(x) lOg q(x) erX p(x) log p(x) () q(x)
= CE(p,q) — HP(X) (meaning?) [

»
»

OI‘, CE(p, q) — Hp (X) + KL(pl |q) Values of Random Variable X



Document Summarization with KL Divergence, Cross Entropy and Entropy (1/2)

* We can use KL divergence to quantify how close a document D and one of

its sentences S are
» The closer the sentence model p(w|S) to the document model p(w|D) , the more likely
the sentence would be selected into the summary set

P(W|MD) The lower the KL score,
KL(D||S) = z P(w|Mp) 1OgP(W|M ) the more important S is!
S

wevV

* Asentence S has a smaller value in terms of KL(D||S) is deemed to be more important

Probability Mass Function p(W|D) p(W |S)

(PMF) p(WlB) Background LM

Words in the Vocabulary

S.-H. Lin et al., “Leveraging Kullback-Leibler divergence measures and information-rich cues for speech summarization,”
IEEE Transactions on Audio, Speech and Language Processing, 2011 68



Document Summarization with KL Divergence, Cross Entropy and Entropy (2/2)

 Further, we can quantify the thematic specificity of each candidate
summary sentence S, which is formally defined as follows

Clarity(S) & CE(B,S) — H(S) Mﬁ\
« Where B designates the background document collection e
« It is hypothesized that the higher the cross entropy (or the farther S away from the B),
the more thematic information S is to convey
« The lower the entropy H(S), the more concentrative the word usage of the sentence S
(S assigns higher probabilities to only some specific content words)

* The original KL divergence can be used in conjunction with the sentence-
level clarity measure for important sentence ranking

The higher the score,

Score(S) = —KL(D||S)+ Clarity(S) the more important S is |

S.-H. Liu et al., "Combining relevance language modeling and clarity measure for extractive speech summarization,"
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015



LM for Information Retrieval (IR): Minimum KL Divergence

« Documents are ranked by Kullback-Leibler (KL)
divergence (in increasing order)

KL(QIID) = Z Pw|Q) log PEW:g; ﬁi@;, o

.......................................................................................

language models of a query
and a document

Equivalent to ranking in decreasing order of

Relevant documents are deemed to
For IR, minimum KL z P(w|Q)logP (w|D) have lower cross entropies
Divergence is
equivalent to minimum rank k
cross entropy and = z C(W Q) logP (WlD) logP(QID) P(QlD)
maximum likelihood e 0




Human Languages: Entropy Rate

« We can assume that a language L is a stochastic process consisting of a
sequence of tokens L = (X, X5, ..., X;,), then the entropy rate of L is

1
Hpaeo (L) = lim —H(Xy, X, oo, X))

n-on

+ We take the entropy rate of a language to be the limit of the entropy rate of a sample
of the language as the sample gets longer and longer



Human Languages: Cross Entropy Rate

« We can also define the cross entropy rate of a language L = (X)~ p(x1,)
according to a model m by

CErate(L,m) = —lim — z p(x1n) logm (X1n)

n-oon
X1n

— lim ;log m(xi,) ((when n — o, p(x1,)=1 2))
n—)OO

~ — Elog m(xy,) (whennislarge enough)

1
= — —Zn lOg m(lexly X2, --'rxj—l)

_log\/H] 1m(x]|x1X2 X j— 1)

1
Note that: Perplexity(x;,,, m) = 2¢Erate(*1nm) = (5, )70



