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Introduction

e Statistical NLP aims to do statistical inference for the
field of natural language.

e In general, statistical inference consists of taking some
data and then making some inferences about this
distribution.

— Use to predict prepositional phrase attachment

* A running example of statistical estimation : language
modeling




Reliability vs. Discrimination

 |n order to do inference about one feature, we wish to
find other features of the model that predict it.

— Stationary model

 Based on various classificatory, we try to predict the
target feature.

 We use the equivalence classing to help predict the
value of the target feature.
— Independence assumptions: Features are independent




Reliability vs. Discrimination

The more classificatory features that we identify, the
more finely conditions that we can predict the target
feature.

Diving the data into many bins gives us greater
discrimination.

Using a lot of bins, a particular bin may contain no or a
very small number of training instances, and we can not
do statistical estimation.

|s there a good compress between two criteria??




N-gram models

The task of predicting the next word can be stated as
attempting to estimate the probability function P :

PW, Wy, -, w, , )

History: classification of the previous words

Markov assumption: only the last few words affect the
next word

The same n—/words are placed in the same equivalence
class:
— (n—1) order Markov model or 7—gram model
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N-gram models

 Naming:
— gramis a Greek root and so should be put together with number
Greek prefix

— Shannon actually did use the term digram, but this usage has not
survived now.

— Now we always use bigraminstead of digram.




N-gram models

For example:

She swallowed the large green .

— “swallowed” influence the next word more stronger than “the
large green

However, there is the problem that if we divide the data
Into too many bins, then there are a lot of parameters to
estimate.




N-gram models

Model

Parameters
|l st order (bigram model): 20,000 x 19,999 = 400 million
2nd order (trigram model): 20.000" x 19,999 = 8 trnillion

3th order (four-gram model): 20,000” x 19,999 = 1.6 x 10!/

Table 6.1 Growth 1n number of parameters for n-gram models.




N-gram models

Five—gram model that we thought would be useful, may

well not be practical, even if we have a very large corpus.

One way of reducing the number of parameters is to
reduce the value of 7.

Removing the inflectional ending from words
— Stemming

And grouping words into semantic classes

Or ...(ref. Ch12,Ch14)
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Building n-gram models

Corpus: Jane Austen’s novel
— Freely available and not too large

As our corpus for building models, reserving Fersuasion
for testing
— Fmma, Mansfield Park, Northanger Abbey,

Pride and Prejudice ({H188ifF5H ), and Sense and Sensibility

Preprocessing
— Remove punctuation leaving white-space
— Add SGML tags <s> and </s>

N=617,091 words , V=14,585 word types

Ip
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Statistical Estimators

* Find out how to derive a good probability estimate for the
target feature, using the following function:

P(W1’”°’Wn)
): P(Wl’”°1Wn—1)

P(Wn‘wl’”"wn—l

e Can be reduced to having good solutions to simply
estimating the unknown probability distribution of

n—grams . (all in one bin, with no classificatory features)
— bigram: h,a, h,a, hsa, h,b,h.b...reduce to a and b




Statistical Estimators

« We assume that the training text consists of /' words.

« We append »—/ dummy start symbols to the beginning

of the text.
— N n-gram with a uniform amount of conditioning available for the
next word in all cases

N Number of training instances

B Number of values in the multinomial target feature distribution

Vv Vocabulary size

Win An n-gram wj - - - wy in the training text

C(wy - --wp) Frequency of n-gram w) - - - w, in training text

v Frequency of an n-gram

f() Frequency estimate of a model

N, Number of target feature values seen r times in training instances
T Total count of n-grams of frequency r in further data

h ‘History' of preceding words

Table 6.2 Notation for the statistical estimation chapter.
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Maximum Likelihood Estimation

 MLE estimates from relative frequencies.
— Predict: comes across _ ?

— Using trigram model: 10 instances (trigrams)
— Using relative frequency:

P(as)=0.8, P(more)=0.1, P(a)=0.1, P(x)=0
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Smoothing

e Sparseness

— Standard N-gram models is that they must be trained from some
corpus.

— Large number of cases of putative ‘zero probability’ n-gram that
should really have some non-zero probability.

e Smoothing
— Reevaluating some zero or low probabillity in n—gram .
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Laplace’s law

* To solute the failure of the MLE, the oldest solution is to
employ Laplace’s law (also called add-one) :

C(wy,---w, )+1
N + B

* For sparse sets of data over large vocabularies, such as
n—grams , Laplace’s law actually gives far too much of
the probability space to unseen events.
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Add-One Smoothing

Take counts before normalize

Unigram MLE : (ordinary)
(w,) _Clw,)

clw,) N

p(wx)zzC

The probability estimate for an n—gram seen r times is

P (w,)= ((Nrilg) . (using add-one)

(r+1)
N +B)

So, the frequency estimate becomes f,(w,)=N (

Ip
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Add-One Smoothing

« The alternative view : discounting

— Lowing some non-zero counts that will be assigned to zero

counts. *
-1-C
C
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Add-One Smoothing

e Unigram example :

vV ={AB,C,D,E} |V|=5
S={AAAAABB,BCC}, N=[S|=10

5for'A', 3for'B', 2for'C', Ofor'D','E’

(2+1)

P(A)- 0+ " P(C)- 0+5)
P(B)= (S):lg) =0.27 P(D)=P(E)= (S)ils)) =0.067
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Add-One Smoothing

e Bigram MLE :

P(Wn W,

e Smoothed :

P (Wn W,

oy,
)="Cw

)= Clw_w [+1
Clw,_,]+V

20



Add-One Smoothing : Example

For example : Bigram

I want to eat Chinese food lunch
| 8 1087 0 13 0 0 0
wanl 3 0 786 0 6 8 6
o 3 0 10 860 3 0 12
eat 0 () 2 () 19 2 52
Chinese 2 () 0 () 0 120 1
food 19 0 17 0 0 0 0
lunch - 0 0 (0 0 1 0
Figure 6.4  Bigram counts for 7 of the words (out of 1616 total word types)

i the Berkeley Restaurant Project corpus of ~10,000 sentences.

N (want)=1215
N (want,want)=0
N (want,to)=768

I

want

Lo

eat
Chinese
food
lunch

3437
1215
3256
938
213
1506
459
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Add-One Smoothing :Example

I want | (o eat Chinese | food | lunch

| 0023 32 0 0038 0 () (0
want 0025 0 .65 0 0049 0066 0049
to 000921 0 0031 .26 00092 0 0037
cat 0 0 00211 0 020 00211 055
Chinese || .0094 0 0 0 0 6 L0047
food 013 0 Ol 0 0 () ()
lunch 0087 0 0 0 0 00220 0

Figure 6.5  Bigram probabilities for 7 of the words (out of 1616 wtal word

types) in the Berkeley Restaurant Project corpus of “10,(MX) sentences.

P (want|want)=0/1215=0
P (tolwant)=786/1215=0.65

Sp
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Add-One Smoothing :Example

P’(want|want)=(0+1)/(1215+1616)=0.00035

P’(to|want)=(786+1)/(1215+1616)=0.28

| want | o eat Chinese | food lunch

| 0018 | .22 000201 .0028 | 00020 | 00020 00020
wani 0014 | 00035 ] .28 00035 | .0025 0032 | 0025
o 000821 000211 .0023 | .18 00082 | 00021 | 0027
cat 000391 00039 0012 | 00039 0078 0012 | 021
Chinese || 0016 | 00055 | 00055 | 00055 | 00055 | .066 L0011
food 0064 | 000321 0058 | 00032 00032 | 00032 00032
lunch 0024 | 0048 | 00048 | 00048 | 00048 | 00096 | 00048

Figure 6.7  Add-one smoothed bigram probabilities for 7 of the words (out

of 1616 total word types) in the Berkeley Restaurant Project corpus of ™ 10,000

sentences.

Sp
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Add-One Smoothing

P(wantlwant) changes from 0 to 0.00035
P(to|]want) changes from 0.65 to 0.28

The sharp change occurs because too much probability
mass is moved to all the zero.

Gale and Church summarize add-one smoothing is
worse at predicting the actual probability than
unsmoothed MLE.
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Lidstone’s Law and Jeffreys-Perks Law

e Lidstone’s Law :
— Add some normally smaller positive value A
C(w,--,w )+ 1
N+ BA

Prig (W, -+, W, ) =

o Jeffreys-Perks Law:

— Viewed as linear interpolation between MLE and a uniform prior
— Also called * Expected Likelihood Estimation’

Clwg,---,w, 1 Clw,---,w )+ A
PLid(Wl’”°’Wn):/u ( 1N )+(1_Z)B: ( 1N+B/1)
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Held out Estimation

« A cardinal sin in Statistical NLP is to test on training data.
Why??
— Overtraining
— Models memorize the training text

e Test data is independent of the training data.
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Held out Estimation

When starting to work with some data, one should always
separate it into a training portion and a testing portion.
— Separate data immediately into training and test dataes-1oweiabie).
— Divide training and test data into two again
— Held out (validation) dataguox)
* Independent of primary training and test data
* Involve many fewer parameters
« Sufficient data for estimating parameters

Research:
— Write an algorithm, train it and test it (X)
e Subtly probing
— Separate to Development test set, final test set (O)

Ip
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Held out Estimation

 How to select test/held out data?
— Randomly or aside large contiguous chunks

« Comparing average scores is not enough
— Divide the test data into several parts
— t-test

28



Held out Estimation : t-test

System 1 System 2

Score 71,61,55,60,68,49, | 42,55,75,45,54,51,
42,72,76,55,64 55,36,58,55,67

Total 673 593

n 11 11

mean X_, 61.2 53.9

s?=> (% -x)* | 1081.6 1186.9

df 10 10

Pooled s°= 1’0811'(?:’0186'9 ~1134 U= \/2—):2 6121115; j ~1.60

t=1.60<1.725, the data fail the significance test.
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Held out Estimation

* The held out estimator : (for n-grams)

C,(w,---w,_) = frequency of w,---w_ in training data
C,(w,---w_) = frequency of w,---w_ in held out data
T = 2 Cy (W ---w,)

r
Wy W Gy (W )=r}

T, :the total number of times that all 7—grams

(that appeared r times in the training text)
appeared in the held out data

« The probability of one of these n-grams :

T
P (w,..w )=—"
ho( 1 n) N N

r
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Cross-validation

« Dividing training data into two parts.
— First, estimates are built by doing counts on one part.

— Second, we use the other pool of held out data to refine those
estimates.

 Two-way cross-validation
— delete estimation

T01+T10
I:)deI(Wl"”’Wn): N(rNO-I-er)

N? : the number of n-grams occurring r times in the 0" part of the training data.
T % : the total occurrences of those bigrams from part0 in the 1" part.
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Cross-validation

e Leaving-one-out
— Training corpus : N—/
— Held outdata : 1
— Repeated V times
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Witten-Bell Discounting

A much better smoothing method that is only slightly
more complex than add-one.

Zero-frequency word or N-gram as one that just hasn’t
happened.

— can be modeled by probability of seeing an n—gram for the first
time

Key : things seen once!

The count of ‘first time’ n-grams is just for the number of
n-gram types w saw in data.
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Witten-Bell Discounting

* Probability of total unseen (zero) N-grams :

. T
ZIO‘_N+T

i:Ci :O

— 7 is the type we have already seen
— 7 differs from 7 (/' is total types we might see)

* Divide up to among all the zero N-grams

— Divided equally T

PP Z(NST)

where @ Z = Z 1 (number of n-gram types with zero-counts)
i C;=0
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Witten-Bell Discounting

* Discounted probability of the seen n—grams

*

P

S jf c.>0
N+T

(ci :the count of a seen n—gram i)

« Another formulation (in term of frequency count)

o
Il

(1 N
Z N+T

C,
. O N+T

JAf ¢ =0

JIf ¢ >0
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Witten-Bell Discounting

e For example (of unigam modeling)
V={AB,C,D,E} |V|=5
S={A/AAAABBBCC}, N=|5|=10

5for' A, 3for'B', 2for'C', 0for'D','E', T =[{AB,C}|=3, Z=2

P(A)= 03" 0.385 P(C)= 03" 0.154
P(B) = (103+ =023 P(D)=P(E)= (10‘1 )*% —0.116
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Witten-Bell Discounting

e Bigram
— Consider bigrams with the history word w,, .
« for zero-count bigram (with W, as the history)
. T(w,)
i:c<vvxz,v:vi)eo o )- Cw, )+T(w,)
T(w,)
Z(w, XC(wiy )+ T (w,,))

p*(Wi Wy ) =

— C(w,): frequency count of word W, in the corpus
— T(w,) : types of nonzero-count bigrams (with w, as the history)
— Z(w,) : types of zero-count bigrams (with w, as the history)

2lw)= 21
i:C(w,w; )=0

Sp ;



Witten-Bell Discounting

e Bigram
— For nonzero-count bigram

C(w,w, )

X7l

i:c(v%v:i )Eo (w ‘WX): C(w,)+T(w,)
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Good-Turing estimation

* A method is slightly more complex than Witten-Bell.
— To re-estimate zero or low counts by higher counts

e (Good-Turing estimation :
— For any n-gram, that occurs r times, we pretend it occurs

I' times: re = (r +1) N , A new frequency count
n

r

N, : the number of n-grams that occurs exactly r times in the training data

— The probability estimate for a n-gram

*

I

Per (X) - N

N : the size of the training data

39



Good-Turing estimation

 The size (word counts) of the training data remains the
same

o0

— Let Zr'nr =N
r=1

~:i :i r_|_]_ r+l:ir'.nr‘:N (set I”=I’+1)
r=1

r=0 r=0

« Unseen: N;/N, why?

0*=(0+1)*N,/N, and number of zero frequency words: N,

So, the probability = (N,/Ng)*No)/N= N,/N (MLE)
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Good-Turing estimation : Example

Imagine you are fishing. You have caught 10 Carp (#_4.),
3 Cod (#£ 4.), 2 tuna (&= 4.), 1 trout (# 4.), 1 salmon (4£.4.),
1 eel (# 4.)
How likely is it that next species is now?
— Po=ns/N=3/18=1/6
How likely is eel ? 1*
— ni=3, n=1
— 1*=(1+1) x 1=2/3
— P(eel)=1*/N=(2/3)/18=1/27
How likely is tuna? 2*
— n2=1, n:=1
— 2*=(2+1) x 1/1=3
— P(tuna)=2*/N=3/18=1/6
But how likely is Cod? 3*
— Need a smoothing for ns4 in advance

Ip
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Good-Turing estimation

e The problem of Good-Turing estimate is

that when n..=0 and P(r*)>P((r+1)*)

— The choice of k may be overcome the second problem.
— Experimentally 4 =k =8 (Katz), Parameter k,N,,,#0

e

Por (ak)< ISGT (ak+1) — (k +1)’ News — Ny 'nk+2(k + 2)< 0
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Combining Estimators

 Because of the same estimate for all 7—grams that never
appeared, we hope to produce better estimates by
looking at (n—1)-grams .

 Combine multiple probabillity estimates from various
different models.
— Simple linear interpolation
— Katz Back-Off
— General linear interpolation
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Simple linear interpolation

Also called mixture model
I:)Ii (Wn ‘Wn—z ! Wn—l) = 2’1 Pl (Wn )+ 2’2 I:)2 (Wn ‘Wn—l)_i_ /13 PB (Wn ‘Wn—l J Wn—2 )

where: 0< 4, <1, Y 4 =1

How to get the weights :
— EXxpectation Maximization (EM) algorithm
— Powell’s algorithm

The method works quite well. Chen and Goodman use it
as baseline model.
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General linear interpolation

* The difference between GLI and SLI is that the weights
(A ) of the GLI is a function of the history.

Kk
P, (wh) = 2 (h)R (whh)
i=1
where : vh, 0<,(h)<1, and Z/Ii(h):l

« Can make bad use of component models

— EX: unigram estimate is always combined in with the same
weight regardless of whether the trigram is good or bad.
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Katz Back-off

« Extend the intuition of the GT estimate by adding the
combination of higher-order language models with

lower-order ones

e Larger counts are not discounted because they are taken
to be reliable. (r>k)

« Lower counts are total discounted. (r<=k)
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Katz Back-off

« We take the bigram (n-gram, n=2) counts for example :

r if r>k
C*[Wi—lwi]:4 d.r if k>r>0
\ﬂ(wi—l)PKatz( ) |f N = O

1.r= C[Wi—lwi]

r(k+Dn,

r n
247 1_(k+1);k+1
n,
dClw,w - > CTwi,w]
3. fw,,)=" W Clw W]o

Z I:)kat

w;:Cw;_y,w; =0
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Katz Back-off

IB(Wi—l) =—

count before
discount

ZC[Wi—mWi]

count after
discount

ZC Wi 4, W)

W W>O

w;:C[w; 4

Z katz( )

W

d@m weight ’

48



Katz Back-off

Derivation of d,:
— Before of the derivation, the d, have to satisfy two equation:

k
an(l—r)rznl and d, =,ur—
r=1 r
1. « ko 2. )
rzzllrnr—;r n, =n —(k+1n,, S'n,(-d,)r=n,
r=1
k
rn.—rn )J=n —(k+1)n : r’
3;( r r) 1 ( )r+1 jrzllnr(l_:uTjr:nl
k
* k
;(mr—r n) :>an(r—yr*):n1 (2)
— = r=1
nl o (k +1)nr+1
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Katz Back-off

'-'(1):(2):( |
. nr-=r'jp .
nl_(k+1)nr1+1 ) nr(r lur)
(r—r*)n - rr
R R XTI B
—d =1~ (r—r*)n1

r[nl _(k +1)nk+1]
_rin = (k+2n,]- (r=r")n,

rln, = (k +1)n,,,]
r'n, —r(k +1)n,

rln - (k+2)n,]
nd

" (k+1)n,.,

I n,

1_ (k +1)nk+l
nl
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Katz Back-off

« Take the conditional probabilities of bigrams (n-gram, n=2)

For example : [ Clwiy,w] if r>Kk
C[C[Wi—l]]
W. ., W
D Iw. . )=4d i-11 Vi if k> 0
KatZ(W"W"l) 1o C[Wi—l] | -
a(Wi—l)PKatz(Wi) It r=0

r* (k+1)
1 d = r n,
S (1
n,
1- ZPKatz( ‘WI 1)
5 0!(W-_1) W, Wi [>0
WC[WZlWPKatz
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Katz Back-off : Example

« A small vocabulary consists of only five words, i.e., V = {w,,w,, -, w, | .
The frequency counts for word pairs started with W, are:
C[Wl,Wz]z 3’C[W1’W3]: Z’C[W11W4]:1’C[W1’W1] - C[Wl’WS]: 0
, and the word frequency counts are :

Clw,|=6,C[w,|=8,C|w,]=10,C[w, | = 6,C[w, | =4

Katz back-off smoothing with Good-Turing estimate is used here for word
pairs with frequency counts equal to or less than two. Show the
conditional probabilities of word bigrams started with w, ,i.e.,

PKatz (Wl ‘Wl )’ PKatz (Wz ‘Wl )’ T PKatz (Ws ‘Wl )?




Katz Back-off : Example

. n : : : -
r :(r+1)r—*1,where n, is the number of n-grams that occurs exactly r times in the training data
n

r

" Py (Wz ‘Wl): Puc (WZ‘Wl): % = %
+

* 1 * 1
1 (1+1)1 2 ( )1
3_(+1)1 3, 2_(2+1)1
4.2 1 _2° 3 4.1 1 _2-381
2T 2+l 2 4 b @)1 -3 2

'
3.2 61

For r=0 = PKatz(W1|W1):a(Wl)*PML(Wl):E 12 34:E
34 2 4 1

Peat (WS‘Wl): a(Wl)* PuL (Ws): 10 12 34 B 15

And Pcat (Wl‘wl)"' Pear (WZ‘W1)+ ~+ Pean (WS‘Wl): 1

Ip
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Kneser-Ney Back-off smoothing

e Absolute discounting

 The lower n—gram (back-off n-gram) is not proportional to
the number of occurrences of a word but instead of the
number of different words that it follows.
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Kneser-Ney Back-off smoothing

e Take the conditional probabilities of bigrams for example :

CEW”

Wi_jPKN (w,)  otherwise

P ( W 1){maX{C[Wil’Wi]_D -0 if Clw,,,w,]>0

Clow]
1. Py (W) ZC[-wJ
1 max{C[w, ,w;]-D , 0}
5 a(Wi—l): w,:C[w,_,w; >0 C[WI 1]

Z PKN

wi:C[wi_,w; |=

95



Kneser-Ney Back-off smoothing : Example

e Given a text sequence as the following :

SABCAABBCS (S is the sequence’s start/end marks)

Show the corresponding unigram conditional probabilities:

Cle A]=3 CleB]=2

CleC]=1 Cles]=1

— PKN (A) :% PKN (B)-;
PKN(C):% Pan (S):%
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Evaluation

e Cross entropy :
H(X,q) = H(X)+ D(pl ) =->_p(x)loga(x)

« Perplexity = 2"

A LM that assigned probability to 100 words would have
perplexity 100

100 1 100

Entropy =—» —Ilog,— = » —1log, 100 =log., 100
,lelOO 2100 Z100 ? ?

perplexity = 2'%%'° =100
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Evaluation

* In general, the perplexity of a LM is equal to the
geometric average of the inverse probability of the words
measured on test data:

IETE

i P(W; [ wy..wi_y)
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Evaluation

N 1
perplexity = 25" = 2‘5@"092 P (Wi [y Wi ;)

1

-log, P (Wi wy.. i ;)

=1

1
HP(WI |W1 WI 1)N
=1

P(W,)=p(Wy)p(Wy)...p(W,)

log P(Wln): 3 p(WI)
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Evaluation

“true” model for any data source will have the lowest
possible perplexity

The lower the perplexity of our model, the closer it is, In
some sense, to the true model

Entropy, which is simply log, of perplexity

Entropy is the average number of bits per word that
would be necessary to encode the test data using an
optimal coder
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Evaluation

entropy .01 1

perplexity 0.69% 6.7%

16 2 3 A4

10% 13% 19% 24%

5

29%

A5

41%

1

50%

e entropy : 524
perplexity : 32->16
entropy : 5>4.5
perplexity : 32> 16+/2

50%

29.3%
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Conclusions

* A number of smoothing method are available which often
offer similar and good performance.

 More powerful combining methods ?

62
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