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Big Data Era — Information Overload

e Too much information kills information!

Written text Speech, Audio, Image, Video, etc.

Phone Conversation .
Meeting

Lecture

Social Media
Streams

Classroom

Today a person is subjected to

Books

more new information in a day
Websites than a person in the middle ages
in his entire life!

\fﬁ ‘ adio News

N’ Al
(2'35“

Broadcast News

Scientific Articles

Some of the above figures are adapted from the presentation slides of Prof. Nenkova et al. at ACL 2011 2
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‘ Introduction (1/3)

‘ e Communication and search are by far the most popular
activities in our daily lives

i
o Speech is the most nature and convenient means of

communication between humans (and between humans and
machines in the future)

A spoken language interface could be more convenient than a
visual interface on a small device

Provide "anytime" and "anywhere" access to information

> Already over half of the internet traffic consists of video data

Though visual cues are important for search, the associated spoken
documents often provide a rich set of semantic cues (e.qg.,
transcripts, speakers, emotions, and scenes) for the data

E

Tur and Mori, Spoken language understanding — systems for extracting Semantic Information from speech, Wiley 2011.
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Introduction (2/3)

‘ o Text Processing vs. Speech Processing
\ > Recognition, Analysis and Understanding

: Text: analyze and understand text

Speech: recognize speech (i.e., ASR), and subsequently analyze
and understand the recognized text (propagations of ASR errors)

° Variability
Text: different synonyms to refer to a specific semantic object or
meaning, such as &2 EMEEKE, Bl K, 2B FREELE, etc.
Speech: an infinite number of utterances with respect to the same
word (e.q., B/EENF AE)
- Manifested by a wide variety of oral phenomena such as disfluences
(hesitations), repetitions, restarts, and corrections

* Gender, age, emotional and environmental variations further complicate
ASR

 No punctuation marks (delimiters) orfand structural information cues
exist in speech




Introduction (3/3)

e Automatic Speech Recognition (ASR) or Speech to Text
o Transcribe the linguistic contents of speech utterances

o Play a vital role in multimedia information retrieval,
summarization, organization, among others

Such as the transcription of spoken documents and recognition of
spoken queries

Making speech & video as
accessible as text

The figure is adapted from the presentation slides of Prof. Ostendorf at Interspeech 2009.




Training Data

Supervised Learning
(Labeled data)
Semi-supervised Learning

(Labeled and unlabeled data)

Unsupervised

Data (Input) Representation

® Dense Features

® Sparse Features

® Deep Learning for Multiple layers
of Non-linearity

Active Learning
(Selectively labeled data)

Evaluation Metrics

® Extrinsic
® |[ntrinsic

Training Criteria

® Maximum Likelihood
(Generative Learning)

® Maximum Discrimination
(Discriminative Learning)

® Maximum Task Performance

Source and Target Distributions

® Single-Task Learning
® Model Adaptation
® Multi-Task Learning

The figure is adapted from the presentation slides of Dr. Li Deng at Interspeech 2015.



Typical Recipe for Machine Learning Research

Yes Does the models do Yes

Does the models do well ‘
. . well on the ‘ Done!
?
on the training data: development/test data?

1 No 1 No
(viz. underfitting) (viz. overfitting)
More complicated models More data

or deeper networks (Rocket fuel)

‘ (Rocket engine) '

There is no data like more data!

The figure is adapted from the presentation slides of Dr. Li Deng at Interspeech 2015. 8



Automatic Speech Recognition (ASR)

» Bayes Decision Rule (Risk Minimization)
W = arg min Risk\W|O
opt LYY ( | )

—arg min > Loss(W ,W’')P(W’
WeWw'’'ew

O)

Assumption: Using the “0-1" Loss Function

(Become a Typical Maximum-a-Posteriori Classification Problem)

— arg max p(O|W)PW)
W eW p(O)

= arg max p(O |W)P(\N) Linguistic Decoding

Wew i — SN

Feature Extraction & Acoustic Modeling  Language Modeling

~ arg max P(W |O)
W eW

Possible  speaker, pronunciation, and domain, topic,
variations environment, context, etc. Sty|e’ etc.
q )
1. F. Jelinek. Statistical Methods for Speech Recognition. The MIT Press, 1999

—— 2. X' Huang, J. Backer, R. Reddy, “A historical perspective of speech recognition,” ACM Communications, 2004



Schematic Diagram of ASR

Speech Waveform
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Historical Progress of ASR

Read speech (vocabulary: 1K, 5K, 20K) Broadcast speech Conversational speech
100%
Conversational
Keee Speeih* Speech
/ Bgoadcehst ——‘—\&S‘Vﬁiboard Cellular
ook SPeec .
..g Poor Microphone Switchboard \
o 1K “ Noisy 2012 System @
s 10% Y
= 20K
I
= 5K -\—
;° Clean
1% | | | | | | | | | | | | | | | | | | |
0 0] (@] o — o o ~t L0 w P~ co (@]] o — o o ~F LD (@]
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Year of Annual Evaluation

q’
“I | X Huang, J. Backer, R. Reddy, “A historical perspective of speech recognition,” ACM Communications, 2014




What is Deep Learning?

Deep learning

From Wikipedia, the free encyclopedia

WIKiiJEDIA
The Free Encyclopedia
Deep learning (deep machine learning, or deep structured learning, or
hierarchical learning, or sometimes DL) is a branch of machine learning based
on a set of algorithms that attempt to model high-level abstractions in data by
using multiple processing layers with complex structures or otherwise,

composed of multiple non-linear transformations.[11(P198)[2][3][4][5]

Shallow Learning GMM, SVM, CRF, NMF/PLSA/LDA,

: . Perception, Boosting, etc.
Representation Learning

\ Deep Learning  DNN, CNN, RNN, LSTM, etc.

(help to discover intricate structure in large data sets)

Deeper is better? vs. Simple is elegant?
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A Surge of Research on Deep Learning (1/2)

e Our computers can learn and grow on their own

e Our computers are able to understand complex, massive
amount of data (deep learning serves as a good foundation
for effectively leveraging big data)

3 10 BREAKTHROUGH S ——
iz TECHNOLOGIES 2013

- ~
4 \
DeeplLearning Te arySocial Prenatal DNA Additive Baxter: The Blue-

I \m Sequencing Manufacturing Collar Robot
With massive I Reading the DNA of
| amounts of fetuses will be the Rodney Brooks's
computational poveer, 'Iessages that quickly next frontier of the Skeptical about 3-D newest creation is
macﬁ;-lneacan now self-destruct could genomic revolutian. printing? GE, the easq to interact with,
recognize obyects and Fnhance the privacy' Ut G0 you reellrlwam wiord's largest but the complex
translate speech in of online o knowr about the: manufacturer, is on innovations behind the
real time, Arificial communicaiions and genetic problems or ihe verge of using the robot show just how
intelligence is finally / miake people freer to musical apitude of techno 1o make hard it 1s to get aleng
\ getting smart. be spontanecus. . wyour unborn child? . jet paris. . with people.
N
—_— Z
Memory Implants Smart Watches Ultra-Efficient Sclar EigDatafrom Cheap Supergrids
Power Phones

A maverick
neunascientist Collecting and
believes he has Doubling the analyzing information
deciphered the code efficiency of a salar from simple cell
by which the brain cell would completely phiones can provide
forms long-term The designers of the change the surprising insights into .
memeonies, Next: Pebible watch realized economics of how peaple move: , new high-power
testing a prosthetic that & mobile phone is renswable energy. abeut and behave — circuit breaker could
implant for e more useful if you Manotechnology just and even hEll‘ﬁ us inalty make highly

Fering from long- don't have to take it might make it understand the efficient DG power
LEFTT MEnony loss. . out of your pocket, N passbie. N spiead of diseases, grids practical. 5

1. http://www.technologyreview.com/lists/breakthrough-technologies/2013/
2.Y.LeCun, Y. Bengio and G. Hinton, "Deep learning," Nature, 521, pp. 436-444, 2015



A Surge of Research on Deep Learning (2/2)

MIT Facebook LLaunches Advanced
(=1 1 [o1[eTe)T] AI Effort to Find Meaning in
Review Your Posts

Atechnigue called deep learning could help Facebook understand
September 20, 2013 its users and their data better.

on September 20, 2013

...... Facebook’s foray into deep learning sees it following
its competitors Google and Microsoft, which have used
the approach to impressive effect in the past year.
Google has hired and acquired leading talent in the field
(see “10 Breakthrough Technologies 2013: Deep
Learning”), and last year created software that taught
itself to recognize cats and other objects by reviewing

Toon Ganguage | (A group of people
Deep CNN  Generating shopping at an
RNN outdoor market.

] @ There are many
vegetables at the
fruit stand.

stills from YouTube videos. The underlying deep learning
technology was later used to slash the error rate of
Google’s voice recognition services (see “Google’s Virtual
Brain Goes to Work”)....Researchers at Microsoft have
used deep learning to build a system that translates
speech from English to Mandarin Chinese in real time
(see “Microsoft Brings Star Trek's Voice Translator to
Life"”). Chinese Web giant Baidu also recently established

a Silicon Valley research lab to work on deep learning.

A little girl sitting on a bed with a teddy bear.

X. He,et al., "Deep learning for natural language processing and related applications,”
Tutorial given at ICASSP 2014.




‘ Deep Learning for Acoustic Modeling in ASR (1/4)

y
‘ e Deep Learning is the cutting edge for acoustic modeling

N

e Dr. LiDeng pointed out that there are three major factors
for the recent success of deep learning in ASR

1. Remove modeling of dynamics by using a long time window
to approximate the true effects of dynamics

2. Reverse the direction of information flow in the deep models:
from top-down as in the deep generative models to bottom-
up asinthe DNN

3. Bypass the difficulty to train a DNN with many hidden layers:
using Restricted Boltzmmann Machines (RBM) or Deep Belief
Networks (DBN) to initialize or pre-train the DNN

E

N T N U

L. Deng, "Deep learning: from speech recognition to language and multimodal processing,” APSIPA Transactions on
Signal and Information Processing, January 2016



Deep Learning for Acoustic Modeling in ASR (2/4)

g

‘ e Deep Learning is the cutting edge!

> E.g., Leveraging Deep Neural Networks (DNN) for Feature
N Extraction and Acoustic Modeling (Context-Dependent DNN-HMM)

Transition Probabilities deeper |aye rs
/
G o oa,  / s longer features &

HMM wider temporal contexts

. Observation (O) — p(O | S-) — I:)DNN (Si | O) p(O) o I:)DNN (Si | O)

? Probabilities 5i l PML (Si) PML (Si )
vl eZiL

. Poan (i |0) = v = softmax; (zL)z -

28"
v2 i
Window of 1 vi = f (z‘q) =f (W‘qv{i1 + be) ,forO0<¥¢ <L
feature frames v!

f () :sigmoid, hyperbolic, or rectified linear unit (ReLU) functions
ot Model parameters of DNN can be estimated with
* | |observation the error back-propagation algorithm and

. stochastic gradient decent (SGD).

DongYu and Li Deng, "Automatic Speech Recognition: A Deep Learning Approach," Springer, 2015



Deep Learning for Acoustic Modeling in ASR (3/4)

Convolution Layer:

e CNN-HMM - Locality: deal with noise

- Weight Sharing: facilitate

> CNN: Convolutional Neural Networks model training
Static, A, AA ; :
S ‘ Convolution layer . Poollng Layer:
/_M \ feature maps HAX pooling other full . : fo
feature maps y Maximum Pooling: less
connected | ble t tral and
i s vulnerable to spectral an

temporal varieties

Frequency :
bands

y

N

™,

—

4i,(m—1)xs+n

Share same weights
g (

Input feature map

Abdel-Hamid et al., Convolutional Neural Networks for Speech Recognition, IEEE/ACM Transactions on Adio, Speech,

and Language Processing, Vol. 22, No. 10, 2014 17




Deep Learning for Acoustic Modeling in ASR (4/4)

g

‘ e Recurrent Neural Networks (RNN-HMM)

Transition Probabilities

HMM ]
Baidu Research Approach
Output: Text (Letters, Words, ....)
Observation
Probabilities h§5) (
Fi M.
R |
¥ @
W@

7 7

Structure of our RNN model and notation.

i 1 s )
* (= " | Observation

q)
“i A.Hannun et al. (Lead by Andrew Ng), "Deep Speech: Scaling up end-to-end speech recognition,” arXiv:1412.5567v2,
N TN U December 2014.



Automatic Meeting Transcription (1/2)

Manual Transcripts Automatic Transcripts

ARERE _afBEABIYAE __bH —a AREE _ahEEREE _WIE _a

A: vip vip room A:  vip £ vip vip room

B: &K B: &

A: i@ KZ B all hands meeting AR & A: 0] Z $1F 48 hand meeting AB#E

C: &5 W& s R BE B JUN&A B C: #5 W& = BE F BF A

A BRE w0 I A0 35 w0 RUE B2 N R R 1 E AFEMENAR — S RIESFFRE S

At — FHa Al —R®B 7

D:BE —F D: E%F'cﬁ — 5

D: ER _aEEBEEFZAE A X # 31 D: £ 2 _A M KE %B@ S T A2 2K 2 FH M
L’f% g J\NE &5 PRl ABE Rl 58 E&B ’?@ R \NE #F5 & A8ME Rl e 8 ¥
374 =)

D: 5‘)5 EE% Loea ol 1 BE OE 2R D: 7 >~ Ze @ oL £ BE & #2R

A: ﬂ? =& B W EF EE% T Bk A: g Bl 2% £ W B %Eﬁ% B

D: D:

ATZEME —RAZREBEEERMEREZE ATNZEEMEXRAZEEELEMERE®R
£ IE vip edge vip

ATmEEERFSI WA AZTESE A MA




Automatic Meeting Transcription (2/2)

g

|
‘ * Acoustic Modeling with Multitask Learning (MTL)
\ (A) Mono-Senones B e Pt cogniionTask  Attlorte beteron sk
Task Dependen
\ (B) Multilingual Information Somer (©0-:00) [00--00) [00--00
L v 1W§
(C) Context State Label ;[OOO - 000!
(D) ConteXt Phone Label Feature Abstraction : : i
Shared Across Tasks : I :
(E) Dark Knowledge (00® . 000
1 wt :
(000 - 000
L e e o -1-W'° _________
[ Input ]
(frame-level raw speech feature)
Worr Error Character Error 4 Lavers # Neurons
Rate, WER (%)| Rate, CER (%) 4 per Layer
GMM-HMM 58.71 51.88 - -
DNN-HMM 43.20 36.45 6 2,048
LSTM-HMM 44,82 38.10 LSTM*3 1024
CNN-DNN-HMM 42.20 35.60 CNN#*2+DNN#*4 2,048
DNN-HMM-+MTL(A) 4587 39.42 6 2,048
DNN-HMM+MTL(B) 42,97 35.93 6 2,048
DNN-HMM+MTL(C) 45.89 38.83 6 2,048
DNN-HMM+MTL(D) 45,51 38.33 6 2,048
DNN-HMM+MTL(E) 42.72 35.91 6 2,048

1. G. E. Hinton, et al., “Distilling the knowledge in a neural network,” arXiv preprint arxXivi1503.02531, 2015
2. J.W. Hung et al., "Robust speech recognition via enhancing the complex-valued acoustic spectrum in modulation domain," IEEE/ACM Transactions on
Audio, Speech, and Language Processing, February 2016.

E’
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‘ Some Applications of ASR

‘ e Multimedia (spoken document) retrieval and organization
‘ o Speech-driven Interface and multimedia content processing
|

> Work in concert with natural language processing (NLP) and
information retrieval (IR) techniques

o A wild variety of potential applications (to be introduced later)

e Computer-Aided Language Learning (CALL)
o Speech-driven Interface and multimedia content processing
o Work in in association with natural language processing techniques
> Applications
Synchronization of audio/video learning materials
Automatic pronunciation assessment/scoring

Read student essays and grade them
Automated reading tutor

e Others

)
E’i IEEE Signal Processing Magazine 25(3), 2008 (Spoken Language Technology)
nThow IEEE Signal Processing Magazine 22(5), 2005 (Speech Technology and Systems in Human-Machine Communication)



Speech-based Multimedia Retrieval , Organization,
Question estion Answering, Machine Translatlon

» Continuous and substantial efforts have been paid to speech-
driven multimedia retrieval and organization in the recent past

’
\

° Informedia System at Carnegie Mellon Univ.
> MIT Lecture Browser
> |BM Speeh-to-Speech Translation, Waston (QA)

> Google Voice Search (GOOG-411, Audio Indexing,
Translation), Google Now

o Apple’s Siri (QA)

> Microsoft Cortana (QA), Skype Translator
> Amazon Echo (QA)

> Facebook chatbot

i 1 $1,000,000 ¢ T

WATSON !

amazon echo
N—1

and fast. Just ask.

We are witnessing the golden age of ASR!

IEEE SLTC eNewsletter - Spring 2010 : Following Global Events with IBM Translingual Automatic Language
Exploration System (TALES)



../DemoVideo/IBM-TALES_Demo.mpeg

g

\

Speech-to-Speech Translation

Handheld System

IBM Advanced Speech-to-Speech Translation
Techniques

Slpeech VN FST TV Speech
nput -
e W - R - e

language language

Fs

v )

ASR engines and models: Translation engines and TTS engines and
. models: models:
Decode speech into text
Translate word/concept to Convert Text to
another language in text Speech

Where in the world do you wish to travel? '

Adapted from the presentation slides
of Dr.Yuging Gao’s at ISCSLP2008




Speech Summarization

distilling
important information
abstractive vs. extractive

generic vs. query-oriented
‘ single- vs. multi-documents

broadcast
and TV news Document Single-document Summarizer

Extraction Generation

PSS AU R — g P—
iSplit sentences § 1 Similarity ! Post-processing

i i . . H 1
; Tol;e}tn zation —+»  Weighting > Assembly
i Filtering 1§ i Select i )

L election ! i
* Normalisation ¢ ' ;i i Paraphrasing ;

____________ ! .......r.....-"
H

Preprocessing

Summary

E

N T N U

Torres-Moreno , "Automatic Text Summarization," Wiley-ISTE, 2014.



Speech Summarization: A Running Example

Manual transcript

ASR output

?ﬂ’ﬁ HERBELONZ BN RE
R EQS Etj DHEEREEREMERBE
U B AL

T N ER B QR ES THEE

IF% BEE SN B S A B B A5 (5 5 RE IR IR WK REE
BEOT RAE AT 2 I B 0 RR B OEE IR E A fé R

SEZ+ — B & B W F A BE BE S5 =R R

HESR ACE =R I B Man A 1 — F 18 HIR 7 IR Mg 8 BB

FRNOBEHLBSHHABREATHEEA —MEFREZEREE T

FRERRIEAB IR

3 ?EE BRITHEEVE SR K BMEEBHEE AN ERMN R

RE BE RY A 5 A% 28 R B Eit BE
BENBESENEAMELUBRENRER T — B EE A F A%
fREJN BE B2 BE B RFT A = & R E = £ IR
LW%ZEi%EKFuZEﬁﬁLXZISXVSZﬁ BE R— 88 oI IR 3\E R
S /)N —{8 A ol R

PRIA BBSR &F S5 iR REE 9 E— 7505 BiE BT K€ B’k B 89 Ik Fiiy

& BE 8BS Sk REER 89 R B8

s FMEETFREHEEN KBRS R AN ED

B B th 1RAE BR MR A I M 1BA B B 21U 7 FEES M Bk B F il

g $28 355
AR R O B 1T 3612 B IRE IRE

E=E RO ZE SN @E

BE AR DR Eﬁﬂﬁliﬁ?ﬁ‘ ERtNMAHWERZFE RN ER TNRE

AEEXL
— I RS ESMBELBEEREMNBE P2 LTI RE LR TR NE SR

B REZTSIELtNSENRER Z IS 1% S RN

S T+ — 5 #0 5 St MO A M) B BN A 2R

BN AR SR B My B — F B IR 7 IR WE R RIBE
BAGAFEERBEAB tRiBEB RS MWEFARMEDRE—FF

BEEERTHEEVEERsNKE "L EELBER AN ER B MR

B 28

BIE B ’RE Pin AW S Wk E FHIL 28
EY%W@%M@EEEWﬁ&M@%M%E”EﬁT

KO MEZEERELANN =2 BERFEFHZ =2 L FE LR
BRY 78 & A I8 43R B 1E R0 B 3R4E 7R 08 371705 &8 18 B =X
METM 15

W& BEOR 75 JoE IR REE A0 IE— 7305 ME BT RE R K S8 /9 IRk FlE

% 28 B E’J thiz A B KBRS /Y SSAERE
EEFHHLEMNKEEZBENRE B R A EHD

AEBMIRE RS E PR A RN I S 2R AL H B Z RO Fi R
SE fth

PR E R E A R & BB RS RE




A Novel Framework for Speech Summarization

V.

e Schematic lllustration

spoken Document to be Summatrized D

speech Signal | Sentence 5 |

mw — |Sente-nc:e 5 |
: .

| |Sente-nce 5, |
4 7

v
Sentence (Generative
Probabality
PO 5

Extraction of
Frosodic Features

Feneral Text Mews

“ollection

Relevance Infonmation |

Sentence Prior
Probabality
F (S;-:'

sentence Eanliing

) Summary
and Sequencing oo ee e e

S” =argmin Y. Loss(Si,Sj)-P(S-‘D)

S;eD S;eD J """"""" 5
_ ; i P(D‘Sj )P(SJ)
=argmin X LoslSeS - S, )

B. Chen and S.-H. Lin, “A risk-aware modeling framework for speech summarization," IEEE Transactions on Audio, Speech and Language Processing, 20(1), 2012




Speech Summarization with Recurrent Neural
Networks (RNNSs)

V.

» Recurrent Neural Networks (RNN) for sentence modeling

I :
Pannim (D 1S) =TTzt Prnim (Wi [ W4, -, W5, S) ;P;t“mbm’f“i}';‘e_“fgy“N;““’“SD }
={Dy,, Dy, Dy
Dy = {gf’m,...,s_"m‘...,gf’m }

J 1Dm|

w;j @ input layer

Vi : output layer

sj : hidden layer

Model Training & Important Sentence Ranking:
1: for D[ to DMdU

<
ERERRY’

2 document-level RNNLM model training
3 LUy, Vi) = 5120 log ()

4: for SID’“ to S°™ do
5

1Dml|
Spoken sentence-level RNNLM model training
Documents isPm|
Speech 6: L (usjpm, Voo U, Vm) =37 og ()
ignal
Signa Speech 7 end for
M‘/\/\ - Recanltlon 8: for SID"‘ to Sllt))Tnl do

System e S\ 9 calculate document likelihood
E Document- 10: p(Dm|5}.Dm) = n‘iiii |P(wi|wl, ---.Wi-l.S]P’")
P D|S
Speech « Sentence M
Summary Ranking

Chen et al., "Extractive broadcast news summarization leveraging recurrent neural network language modeling techniques," IEEE/ACM
Transactions on Audio, Speech, and Language Processing, August 2015

Rll\(lal\\lleLlM 1 - p (w Usfm'vsj.’m'sjbm)
/ 12: end for
Sentence- 13: Sentence selection according to P(Dmlsjp”‘)
Specific 14:  end for

RNNLM

The design of learning curriculum for
RNN is of paramount importance here




Speech Summarization with Clarity Measure

V.

» Aclarity score is defined for each sentence

o The clarity score incorporates both intrinsic and extrinsic cues
from the sentence P(W|S) P(W|S)

Clarity(S) = CE(B||S) - H(S)

~Zwey P(W[B)logP(w[S) -3, PWIS)logP(w[S) " ~lee to Np Specific

P(w|B): background unigram model High Away from N,  Uniform

o The clarity score can be combined with KL-Divergence Measure
for selecting salient sentences: (RouE2)

0.335

=KL
KL+CE

mKL+H

u KL+Clarity

—KL(D || S) + Clarity(S)
=—-KL(D||S)+CE(Np ||S)—-H(S)

The higher the score, the more salient the sentence. 02 -

Liu et al., "Combining relevance language modeling and clarity measure for extractive speech summarization," IEEE/JACM Transactions on
Audio, Speech, and Language Processing, June 2015




Speech Summarization with Density Peaks
Clustering

y

\

* Fundamental Premise: Summary Sentences should Have
1. Ahigher density score than other sentences

2. Ahigher divergence score than other sentences that also
have high density scores

* The density score for any sentence S; ina document D to

be summarized can be defined by subtopic 1 -
density(S,) =——— 5 x(sim(S,.S,)~0) .
K-1ij=1 ji' -
R X
1 ,if x>0 25
x(X) = .
, otherwise subtopic 2 7

» After the density score for each sentence is obtained, the

divergence scores of the sentences are calculated by
divergence(S;) =1- max sim(S;,S;)

‘v’Sj eD
density (S j)>density (S;)

)
E’ 1. A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks, Science, 2014

2. Chenetal., " Incorporating paragraph embeddings and density peaks clustering for spoken document summarization," ASRU 2015

N T N U
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Computer-Assisted Language Training
(CAPT)

FO (&) 1
™ High FO Region —— % (Tone )
R My eBook -2 (Tone 2)
— 5% (Tone 3)
ol Low FO Region
VU4E ( Tone 4)
Time

I hope you have a great 2 May you enjoy yo = Don't forget to make a
day.y heaith wish. @y

3N © =
EREFERNRRTAR - et pow outne :letssingthe sono.ey - FIEASEIMAREENISH o

NEESRENNRERETF LD HREL RS - \ Pioiss mik & WEH | Vo s

ATBRGREALEBREBOMDIA - —a b 4 AU - © =

Let me cut the cake. ;Ezlsl:::cakeinm 3 Have some cake.¢y

112(31415 e i ¥ . Let me cut the cake. Your choice: 1

[ 1:E T ING) 5. AT | © =

0140522 F
d Now, blow out the 2 Accept my birthday s The cake is 50

NUBTHR AEREE-TRFERERL
---------------

2014/04129

20140327

Supyeads

© 2014 College of Education e-Learning Lab, NTNU. Al rights reserved, f’,‘ ‘};

Pronunciation of Lexical Tones:
Detection and Assessment

* Pronunciation of Sub-word (Syllable, ‘ ¥
INITIAL/FINAL) Units: Detectionand [ i
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* Speaking Style (Duration, Fluency ): : mm-;. .
AEE - TRPEERRNAR - HETRSEORE -
Assessment

* Overall Scoring (word-, phrase-,
sentence-levels)

1. Mandarin Chinese CAPT: http://140.122.96.191/ALS/assessment.aspx

2. English CAPT: http://www.coolenglish.edu.tw/ 30



CAPT: Motivation

o Computer assisted pronunciation training (CAPT) has attracted
increasing research interest recently, partly due to the rapid
progress of automatic speech recognition (ASR) technology

o Deep Learning + Increasing Computational Power + Big Data + ...

Computer-Assisted Pronunciation Training (CAPT)

(L2) Test
Utterance *| Mispronunciation ,|  Error Pattern , Feedback to
Detection Diagnosis Learner

Text Prompt

(Canonical Pronunciation)

e Mispronunciation detection (MD) is an essential module in a
CAPT system

o Assist second-language (L2) learners to pinpoint incorrect pronunciations
in a given utterance in order to improve their spoken proficiency

> E.g., phone-level or word-level substitution errors, insertion errors,
deletion errors, among others

E
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Technical Framework for MD

e Schematic diagram of a conventional (mainstream)
framework for mispronunciation detection

\

(L2) Test Acoustic
—  Feature
Utterance Extraction (with parameters
l Phone-level empirically tuned)
Text Prompt —» Forced R [I):?a(;ltsdfen Decision _>Correct/,)
(Canonical Pronunciation) Alignment Extraction Function Incorrect
Test Phase
Acoustic 1 Training Phase

(L1) Training —| Feature ~_ |
Utterances Extraction Acoustic

Acoustic Models
Transcriptions__| Model |—| (GMM-HMM)

(Correct Pronunciations) Training —

(maximum ASR performance training, such as ML and MC)
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Forced Alignment & Generating Competing Phone
Hypotheses (in the Test Phase)

(L2) Test
Utterance

acoustic feature
vector (observation)
sequence

Text Prompt —
(Canonical Pronunciation)

= O - tpe-

acoustic feature extractionl

compute top M confusing
phone hypotheses of each
aligned phone segment for

decision feature extraction
with the help of acoustic
models

IR

perform forced-alignment
using Viterbi algorithm and
acoustic models

(I Model a Model b Model ¢

Acoustic T - M ] )

Models %
(GMM-HMM) 1

b, (0): Zwm I exp[—g(o—pﬂ_)'f.”‘_] (O_P,-k )J
!‘!1,-"‘ (2‘”) E:A ’ T
. . . . / { Mean Vector
GMM-HMM: hidden Markov model (HMM) with Gaussian mixture models Vixture Covariance

(GMM) for estimating state-level observation probability Weight Matrix Observation Vector
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‘ Phone-level Decision Feature Extraction

y
‘ o Adopt the commonly-used goodness of pronunciation (GOP)

measure for decision feature extraction, based on the phone-

level posterior probabilities computed with forced alignment
and acoustic models

-

GOP(u,n) = log P(qu,n | Ou,n) posterior probability
u,n
1 log P(Oyn [ au,n) o likelihood
~ ~ og likelihood ratio
Tun  Zgeftopm} P(Ounla)
or jannanLnoannonnnn e ::: e e
P(Ou,n | Qu,n) QAA . =
GOP(u,n) = —log— mef —
Tu,n ‘MaXgcfropm} P(Oyn ()




‘ Phone-level Decision Functions

y
‘ * Asto the decision functlon we can adopt the logistic
\ sigmoid function for our purpose

j,D(u,n)
D(u.n) = = N
’ 1+exp[a(GOP(u,n)+,B)] e

a(GOP(u,n) + B)

- Take the GOP score as the input and output a decision score, ranging
between oand 1
D(u,n)> 7z impliesthe occurrence of mispronunciation for phone q

* The higher the decision score, D(u,n) , the more likely the phone Gy n is
mispronounced

* The parameters ¢, and the threshold 7 are empirically tuned in

practice (one size fits all: all phones share the same set of parameters/threshold)




Our Research Contributions for MD (1/2)

We explore recent advances in deep learning (especially
deep neural networks, DNN) to achieve better speech
feature extraction and acoustic modeling

4
N

>. An effective learning approach is proposed, which
estimates the DNN-based acoustic models by optimizing
an objective directly linked to the ultimate evaluation
metric of mispronunciation detection

3. Decision functions of different levels of granularity, with
either phone- or sub-phone(senone)-dependent
parameterization, are also explored for mispronunciation
detection




Our Research Contributions for MD (2/2)

e Schematic diagram of our proposed approach to
mispronunciation detection

e s
Utterance Extraction Phone-/ Phone-/
Sub-phone- Sub-phone-
* level level
Text Prompt —» Forced | | Decision || pecision _»Correct/?
(Canonical Pronunciation) Alignment Featur_e Function Incorrect
Extraction 5
______________ Test Phase
Acoustic M Training Phase
(L1&L2) | Feature Q
Training Extraction Noustic
Jtterances . Decision Function
o Acoustic Models T rainin
('I(':ransi:/?ptlons J Model > (DNN-HMM) 9
orrect/Incorrect .. . ..
e ~ (maximum MD performance training)
Pronunciations) Training

(maximum MD performance training)
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‘ Maximum Performance Training for MD

* Instead oftrammg the acoustic models with criteria that
maximize the ASR performance, we attempt to train the
acoustic models with an objective function that directly
maximizes the performance of MD

> For example, the maximum Fa-score criterion (MFC)
=(0)=2ConH__ 2 >u2ny 1(D(u,n)) - H(u, n)

Co+Cn  [Z§,4ZNyI(DU.n)]+Ch
~ 2- Y0 >hy D(u,n) - H(u,n)
[ZtlJ=1Zrl?|:ulD(u! n))] + CH

Where 0 denotes the set of parameters of both the DNN-HMM based acoustic
models and the decision function

Cpnn is the total number of phone segments in the training set that are identified as
being mispronounced simultaneously by both the current mispronunciation
detection module and the majority vote of human assessors

Optimized by stochastic gradient ascent algorithm + chain rule for differentiation




‘ Appendix: F1 Score for Performance Evaluation

y
‘  The default evaluation metric for mispronunciation

detection employed in this work is the F1 score, which is a
harmonic mean of precision and recall

-

: ision - C
F1Score — 2 Pre_c_|3|on Recall _ DOH

Precision + Recall Cp +Cq

iti C

Precision — 'Ijr_ue Positive - DNH

True Positive + False Positive Cp

iti C

Recall — True Positive ~ CpnH

True Positive + False Negative ~ C




Performance Evaluation of MD

Normalized Phone Count

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0.0

0.0-0.1 0.1-0.2 0.2-0.3

——GOP(GMM-HMM)

Mispronunciation Detection

0.3-0.4 0.4-0.5 0.5-0.6
F1 Score

——GOP(DNN-HMM)

0.6-0.7 0.7-0.8 0.8-0.9

——GOP(DNN-HMM)+MFC

0.9-1.0
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A Running Example of MD
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Conclusions (1/2)

e Multimedia information access (over the Web) using speech
will be very promising in the near future

e Speech processing technologies are expected to play an
essential role in computer-aided (language) learning

* We have observed an increasing surge of interest in
developing deep learning techniques for text and

multimedia processing

(as pointed out by Dr. Li Deng at Interspeech 2015)
o Speech recognition: all low-hanging fruits are taken

° Image recognition: most low-hanging fruits are taken
> Natural language processing: not many low-hanging fruits are there

° Big data analytics (recommendations, user behaviors, business
strategies) would be a new frontier




Conclusions (2/2)

* Machine Learning (ML) emerges to be an attractive realm of

research for young talents Mathematics (Probability
> Confluence of Multiple Disciplines Theory & Linear Algebra)
Programming
Languages Statistics
Networking /
q Natural
' Language
Exploring Known Unknowns _ Processing
Big Data
VS.
Exploring Unknown Unknowns
Cloud
Computing

——

Signal Processing
\/
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