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Introduction

• n-gram modeling is not always adequate
– Only capture local contextual information or word regularities

• Probabilistic Latent Semantic Analysis (PLSA)–based LM 
can be used to complement n-gram models
– Model the co-occurrence relationship between a word and its 

history through a set of latent topical distributions

• Trigger-based LM can also be used
– The long-distance relationship between the words in the search 

history and the currently predicted word can be captured
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Probabilistic Latent Semantic Analysis (1/2)

• PLSA models the co-occurrence of word and documents 
and evaluates the relevance in a low dimensional 
semantic/topic space
– Each document is treated as a document model

• Model parameters are trained beforehand using a set of 
text documents
– Maximize the log-likelihood of entire collection
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Probabilistic Latent Semantic Analysis (2/2)

• PLSA in LM Adaptation
– The search history can be treated as a pseudo-document which 

is varying during the speech recognition process 

• The topic unigrams                    are kept unchanged
• The history’s probability distribution over the latent topics is 

gradually updated
• The topic mixture weights are estimated on the fly
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Trigger-based LM (1/2)

• To capture long-distance information, we also can use 
trigger pairs 

• Instead of using the average mutual information (MI) for 
the selection of trigger pairs, the TF/IDF measure which 
captures both local and global information can be used

– Word pairs with MI or TF/IDF scores above a threshold are 
selected
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Trigger-based LM (2/2)

• The associated conditional probability of the selected 
trigger pair can be estimated by using a context window

• The search history  for a decoded word  can be viewed 
as a series of words  and the probability of the search 
history predicting word  can be expressed by linearly 
combining the conditional probabilities of the trigger pairs
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Word Topical Mixture Model (1/4)

• In this research, each word of language are treated as a 
word topical mixture model (WTMM) for predicting the 
occurrences of other words

• WTMM in LM Adaptation
– Each history consists of words
– History model is treated as a composite word TMM 
– The history model of a decoded word can be dynamically 

constructed
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Word Topical Mixture Model (2/4)

• Exploration of Training Exemplars
– Collect the words within a context window around each 

occurrence of word in the training corpus 
– Concatenate them to form the relevant observations for training 

the word TMM

– Maximize the sum of log-likelihoods of WTMM models 
generating their corresponding training exemplars
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Word Topical Mixture Model (3/4)

• Training of WTMM models
– Expectation-Maximization (EM)Training formulas

– Similar to PLSA but trained in the supervised manner (for its 
prediction ability)
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Word Topical Mixture Model (4/4)

• Recognition using WTMM models
– A simple linear combination of WTMM models of the words 

occurring in the search history

– Weights are empirically set to be exponentially decayed as the 
words in the history are apart from current decoded word
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Comparison of WTMM, PLSALM and TBLM

YesNoYesPrediction Ability
At mostParameters 

ImplicitExplicitExplicitTopic Modeling 
OfflineOn the flyOfflineModel Estimation

Words Word and HistoryWords Modeling 
Relationship

TBLMPLSALMWTMM

ingfor  train  used  documents  ofNumber   : number;  Topic  size;  Vocabulary DK:V:

2××KV VV ×DKKV ×+×

– Topic Modeling: Model topics with explicit or implicit probability 
distribution

– Prediction Ability: The prediction of the decoded word given the
search history
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Experimental Setup

• Background LM corpus
– Central News Agency Text News 2001 ~ 2002
– 170 million words

• LM Adaptation corpus
– Mandarin Across Taiwan Broadcast News (MATBN) collected 

during 2001~2002 and consisting of 1 million words

• Speech Recognition Test Set
– 2003 MATBM consisting of 1.5 hr speech data

• In this study, the language model adaptation experiments 
were performed in the lattice rescoring procedure
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Experimental Results (1/4)

• Experiment-I: WTMM baseline settings

– The best CER (Chinese character error rate) result was achieved 
when training window size M = 3 , exponential decay rate = 0.3 
and history length H = 5 in our task

History Length H = 10 (Uniform Weight)
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Experimental Results (2/4)

• Experiment-II: Comparison of WTMM, PLSALM, TBLM

– WTMM performs slightly better than PLSALM and TBLM in CER 
measure

– TBLM trained with MI score performs better in PP (perplexity) 
measure
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Experimental Results (3/4)

• Experiment-III: MI and FB score for WTMM training 
observation selection

– Training observations can be further reduced (by 30% in our task) 
using the two statistical measures without loss of performance

– The results obtained using FB score is better than that using MI
score
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Experimental Results (4/4)

• Experiment-IV: Comparison of WTMM and other LMs

– WTMM performs as well as the other models
– Aggregate Markov model is a specific case of WTMM (with training

window size M = 1 and history length H = 1)
– Mixed-order Markov model can be considered as a combination of a set 

of skip-K bigram models
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Conclusions

• We have proposed a word topical mixture model (WTMM) 
for dynamic language model adaptation 

• We compared it with the PLSA- and TBLM-based 
approaches and very promising results in both perplexity 
and character error rate reductions were initially obtained 

• WTMM has also been properly applied to the spoken 
document summarization task

• More in-deep investigation and analysis of the word 
TMM-based approaches are currently undertaken 
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Appendix A: Class-based Bigram Model

• (Hidden Markov models for) Class-based bigram model

– Nondeterministic class assignment

– Deterministic class assignment

• Estimation of class bigram and word unigram probabilities
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Appendix B: Aggregate Markov Model

• An alternative approach for class-based bigram LMs

– Models trained by maximizing the log-likelihood of the training 
corpus
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Appendix B: Aggregate Markov Model (2/2)

• Model Training Using  the EM algorithm
– Expectation

– Maximization
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Appendix C: Mixed-order Markov Model (1/2)

• Probability distribution
– Combine skip-k transition matrix

– Can be viewed as a coin toss process
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Appendix C: Mixed-order Markov Model (2/2)

• Model Training Using the EM algorithm
– Expectation

– Maximization 
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Appendix D: n-Gram Adaptation Methods (1/4)

• Count Merging
– n-gram conditional probabilities form a a multinominal distribution

• The parameters                               form sets of independent 
Dirichlet distributions with hyperparameters

– The MAP estimate is the posterior distribution of 
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Appendix D: n-Gram Adaptation Methods (2/4)

• Count Merging (cont.)
– Maximize the posterior distribution of         w.r.t. the constraint

– Differentiate          w.r.t.    
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Appendix D: n-Gram Adaptation Methods (3/4)

• Count Merging (cont.)
– Parameterization of the prior distribution (I):

– The adaptation formula for Count Merging

• E.g.,  
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Appendix D: n-Gram Adaptation Methods (4/4)

• Model Interpolation
– Parameterization of the prior distribution (II):

– The adaptation formula for Model Interpolation

• E.g.,  
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